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Foreword

Scarce natural resources, legal requirements, and cost savings are some of
the reasons why product recovery is given increased attention. Disassembly
processes are obviously an essential aspect of product recovery and, there-
fore, the corresponding planning is crucial. It turns out that this planning
can be applied not only to product recovery, but also to repair and main-
tenance. In this remarkable thesis, Christian Ullerich chooses a managerial
economics perspective and concentrates on disassembly-to-order planning.
He develops comprehensive mathematical models reflecting the disassembly
process, in order to determine the optimal number of cores to be procured
and to specify the optimal types and quantities of modules, items, and
material to be sold.

The thesis is divided into two main parts: complete disassembly plan-
ning and flexible disassembly planning. In the first main part he develops
a new consistent model which integrates e.g. conditions of cores, purity
requirements for material recycling, and demand restrictions. In contrast to
existing models, this linear model is extended by considering linear price-
quantity dependencies, with the result, that a non-linear problem arises. To
solve the problem Christian Ullerich combines modified non-linear methods
and commercial solvers in an innovative and impressive manner. Moreover,
the initial static model is extended to a dynamic approach by taking mul-
tiple periods into account. A newly developed rolling horizon planning is
applied and the excellent solution quality is proven by a comparison with
the solution gained from a total planning approach.

In the second main part a completely new disassembly model is pre-
sented. In contrast to the complete disassembly planning, several modules
can be maintained. The question arises to what extent the cores have to
be disassembled (disassembly depth) and which disassembly sequence has
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to be taken. The already existing simultaneous approaches are significantly
extended by Christian Ullerich. The new idea is that for each type of a core
more than one disassembly state is allowed. That means that one type of
a core could be disassembled in different ways which offers a completely
new degree of freedom. Since this new approach includes different disas-
sembly models as special cases, Christian Ullerich denotes this model as
flexible planning. Further, he provides different recommendations to solve
the problem heuristically in order to cope with the high model complexity.

Summarising the above, it should be noted that the disassembly research
is considerably enriched by a lot of new and future-oriented ideas and meth-
ods. Therefore, I hope that Christian Ullerichs excellent dissertation finds
large distribution.

Prof. Dr. Udo Buscher
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Chapter 1

Introduction

1.1 Motivation

The product recovery and thus the disassembly process become more and
more important these days. The motivation for product recovery is manifold.
Typical motives are legal restrictions or environmental guidelines. Examples
are the Waste Electrical and Electronic Equipment (WEEE) Directive for
electrical and electronic products and the End-of-Life Vehicles Directive.
Furthermore, there is also the fact of the environmentally friendly image.
So it seems that product recovery becomes part of the competitive strat-
egy of a company. Hence, companies are economically interested in product
recovery, which increases the quantities of recovered products and makes a
planning even more necessary. In addition, companies aim at maximising
their profit or minimising their loss. So if it is possible to gain a profit out
of the product recovery, companies should be more than willing to recover
products. A further aspect is that manufacturing a new product utilising
remanufactured parts causes only 50–60% of the cost.1 In addition, dis-
assembly companies do not just exist since today. The existing specialised
companies have already operated profitable. Hence, economic reasons exist,
too.2

Next to the legal requirements and the cost saving, another reason causes
the increase of recovery volumes. The natural resources for selected material
become scarce, which leads to an increasing price for such material and in-
creased cost for the exploitation. This, on the other hand, makes the product
recovery more beneficial so that natural resources and cost are saved. Hence,

1 Cf. Thierry et al. (1995): Strategic issues in product recovery, p. 119.
2 Cf. Fleischmann et al. (1997): Quantitative models for reverse logistics, pp. 2 et seq.
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2 1 Introduction

the quantities for product recovery increase. And this increase of quantities
together with the goal to make the recovery process as profitable as possible
requires an optimal planning. This applies to any associated research field,
and in particular to the disassembly planning.

Disassembly planning is one of the key issues in product recovery. More-
over, disassembly planning is also applicable in repair and maintenance.
Thereby, disassembly is the entity of all planned processes that systemati-
cally separate a core into modules, items, material and waste.3 In this con-
text a core is a returned or recovered product. A module or sub-assembly is
a set of items, which are connected among each other. An item is the small-
est single piece a core or module consists of. We subsume modules and items
as parts. When the value added is of interest, i.e., the module and item is
demanded for some kind of reuse, we still call them module and item, re-
spectively. If, on the other hand, the value added is not of interest, i.e., only
the material value is important, the parts are subsumed as material, even
though the parts are entire. Lastly, if not even the material is of interest
anymore, the parts are disposed of, which means they are characterised as
waste. This way, the planned usage category of a part is already represented
by the notation.

The disassembly planning is in the area of conflict of managerial eco-
nomics, industrial management, engineering, and practice—maybe even
more. Depending on the point of interest, different research fields have
emerged. These are the disassembly sequencing, disassembly scheduling,
disassembly-to-order planning, and disassembly line balancing—to name a
few. And as if that were not enough, the influence of the disassembly reaches
as far as to the research and development stage of a product. This aspect is
considered in the research area of design for disassembly. Basically, aspects
of disassembly are omnipresent during the complete life cycle of a product.

From a managerial economics point of view, the main interest is the cost
minimisation or profit maximisation. This applies to conceptual models as
well as quantitative models where, e.g., supply and distribution quanti-
ties are determined. In the context of disassembly planning, the line bal-
ancing, scheduling, and disassembly-to-order planning focus such problems.
Thereby, the disassembly-to-order planning—and especially the generalised
disassembly-to-order planning, which is focussed on in this work—can be
seen as somewhat superior to the other planning problems, which makes it
interesting as a kind of central planning problem. The other planning prob-

3 Cf. Brennan/Gupta/Taleb (1994): Operations planning in assembly/disassembly ,
p. 59, Zussman/Zhou (1999): Methodology for modeling disassembly processes, p. 190,
and Seliger (2011): Montage und Demontage, p. S97.
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lems like line balancing, scheduling, or sequencing use the results of the
disassembly-to-order planning, because disassembly-to-order planning aims
at fixing the supply and distribution quantities the other planning problems
take as given.

As indicated in the literature, the disassembly planning is not just the re-
verse of production planning. In the disassembly planning a diverging prod-
uct structure is dealt with, whereas in production planning a converging
product structure is prevalent, i.e., in production planning the construction
guidance is given and the result is usually one final product. However, in
disassembly planning not only many “products” result from one unit of a
core, but, in addition, the decision is necessary how far a core is disassem-
bled, i.e., which “products” are the result of the process. Furthermore, the
assembly is not always simply reversible and the value added is lower in
disassembly than in assembly.4

Moreover, disassembly processes are mainly conducted by humans, i.e.,
they are labour intensive.5 This gives the disassembly processes a flexibility
that is necessary for a wide range of companies and products. One reason
is surely the uncertainty about the core specific condition. Another reason
is the fact that companies take back cores of different make and model.
This means that it might not be clear which core is recovered, how old the
core is, and how many of them are recovered.6 Nonetheless, this does not
mean that automatic (flexible) disassembly should not be enforced. Think-
ing of the growing quantities the automatic disassembly becomes neces-
sary—surely not for all products, but where it suits. When the disassembly
can be conducted very flexible, the planning of the process should account
for this flexibility. And especially in the disassembly-to-order planning this
flexibility has to be integrated.

A consideration of the flexibility in the disassembly-to-order planning—be
it the uncertainty or the individual disassembly depth in incomplete (or par-
tial) disassembly—does not only account for the flexible process to realise
the maximal profit. In addition, it might reduce the complexity of subse-
quent planning problems like scheduling, sequencing, and line balancing. If
the disassembly-to-order planning fixes the optimal disassembly states (i.e.,
a specific set of parts is gained out of a unit of a core), the subsequent
planning problems could possibly be transformed to a multi-core complete
disassembly problem. This should reduce the size of the subsequent models

4 Cf. Lambert (2003): Disassembly sequencing: A survey, pp. 3721 et seq.
5 Cf. Bley et al. (2004): Human involvement in disassembly, p. 487, and Kopacek/
Kopacek (2006): Intelligent, flexible disassembly, p. 554.
6 Cf. Lambert (2003): Disassembly sequencing: A survey, pp. 3721 et seq.
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and will most likely speed up the solving, because the incomplete disas-
sembly planning incorporating condition uncertainties as well as the usage
options reuse, recycling, and disposal make the planning model complex,
which is illustrated in this work.

1.2 Objectives

This work seeks to provide an insight into the disassembly planning.
Thereby, facets are considered, that go beyond the considerations which
can be found in today’s literature. The focus is on a consistent integration
of core condition, damaging during the disassembly, hazardous items, and
recycling material purity requirements in the planning. Furthermore, there
always exist the three usage options (i.e., distribution channels): reuse, ma-
terial recycling, and disposal. In addition, the supply of cores as well as the
distribution of disassembly output, e.g., parts for reuse, material for recy-
cling, and waste, might be limited. Even though, damaging of items during
the disassembly is considered, we assume non-destructive disassembly. This
does not mean that nothing gets damaged—be it an item or a joint that
connects items—, but we believe that because of human labour the differ-
ences between destructive and non-destructive disassembly with regard to
cost and time are not too significant. In addition, the cores do not have to
be disassembled down to every nut and bolt and the destructive disassem-
bly can be expressed as a special case of the non-destructive disassembly,7

which makes a differentiation possible, even if it is not explicitly considered.
Since most disassembly companies do not just obtain a single core, a

multi-core planning is necessary. Otherwise, the influence of a resource al-
location for one core on the other cores cannot be reflected satisfactorily.
The condition and damaging contain uncertainty, because it is usually not
clear which condition a specific unit of a core is in and whether an item
gets damaged during the disassembly process or not. We assume that the
companies are able to estimate fractions of certain conditions and the dam-
aging. This estimating can be done by educated guessing or by some kind
of monitoring. For example, the Stadtreinigung Dresden GmbH (a German
sanitation company) monitors the yields of material they get out of clus-
ters of cores. Anyhow, as long as this information is available, it should be

7 The special case occurs when an item is either always disassembled non-destructively or
always destructively. In the case of destructive disassembly the damaging is set to 100%
and the cost factor is adjusted accordingly. If both disassemble methods are possible, the
planning for this core has to be transformed into a multi-core planning.



1.2 Objectives 5

integrated in the planning. Of course, it is usually not detailed enough for
a thorough stochastic modelling. Hence, the inclusion of this information,
i.e., the fractions, in the deterministic planning makes the consideration of
uncertainty possible and we call it quasi-stochastic planning.

With (quasi) stochastic planning the realisation of the stochastic values
is not known in advance, so that—especially for small quantities—the real-
isation can be very different to the expected value. The same applies to the
fractions. Nevertheless, they are used for planning in a deterministic model.8

Once the optimal quantities are gained, there is a link missing to the con-
trol of the disassembly process, because for a particular unit of a core the
disassembly state (for incomplete disassembly with more than one resulting
state per core) and the assignment of the resulting items and modules of
that particular unit to a usage option is necessary. All the aforementioned
aspects should be considered in disassembly planning.

Speaking of more than one disassembly state per core as a possible re-
sult of the disassembly process, leads to the aspect of flexible disassembly
planning. Flexible disassembly planning allows several different disassembly
states for a core to be planned at the same time. And this should be pos-
sible not only for tree-like core structures. Thus, the complete disassembly
and the disassembly of tree-like core structures are special cases of the flex-
ible disassembly planning. This planning should still incorporate all above
mentioned aspects. With this increased degree of freedom in the planning,
a new decision dimension is introduced, i.e., the disassembly depth. Hence,
it is expected, that the planning is more difficult compared to the complete
disassembly planning. Whether or not this extra effort leads to a plus, has
to be revealed.

Next to the flexibility, two further aspects are of interest. One is the plan-
ning of quantities over several periods. A predominant approach is multi-
period planning with fixed initial and final inventory, e.g., zero inventory. It
is believed, that this approach prevents good solutions for a business that
continuous a long time, i.e., beyond the planning horizon. In addition, it
might be of interest how the planning reacts on data, which changes dur-
ing the planning of neighbouring periods. Furthermore, it is interesting to
know, whether the multi-period planning is suitable for delivering decision
support for the contracting in periods ahead.

The second aspect is the consideration of quantity dependent prices and
unit cost. Usually fixed prices and unit cost are assumed in the disassembly
planning. However, Jorjani/Leu/Scott consider a piecewise linear pro-
gram to find the optimal disassembly policy. Thereby, the piecewise linear

8 Cf. Kongar/Gupta (2006b): Disassembly to order .
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function is used to model decreasing revenues as the volume available for a
usage option (e.g., recycling) increases. Thereby, the prices change in dis-
crete steps.9 But not all usage options and no supply of cores is considered.
Hence, an extension by these and a continuous price or unit cost change for
changing quantities is of interest.

The above discussed points shall now be summarised to four research
questions. Based on the complete disassembly considering core condition,
recycling purity, item damaging, hazardous items, etc. advances towards
price-quantity dependencies, dynamic multi-period planning, and flexible
disassembly planning shall be made to answer the following questions:

Q1: Can price-quantity and cost-quantity dependencies with external
sources (supplier & customer) be integrated in the planning and to
what extend?

Q2: How can the contracting with suppliers and customers be supported
by a multi-period dynamic planning?

Q3: Is the (optimal) flexible disassembly planning beneficial? And if so:
Q4: How can the resulting quantities be interpreted to find a concrete

disassembly guideline?

Obviously, question four is only to be considered if question three is an-
swered positively. In order to discuss the question this work is structured as
illustrated in the following section.

1.3 Structure of this work

Following the introduction in this chapter, the topical placement, the review
of relevant literature, as well as a first disassembly-to-order planning model
considering complete disassembly is illustrated in Chap. 2. Thereby, this first
disassembly model is modified to fit the needs. The result is the developed
basic model in Chap. 3. This basic model is the underlying model for all
other developments in this work—as depicted in Fig. 1.1. In this figure we
find arrows starting from the basic model and pointing to the section with
the linear price-quantity dependency, one to the rolling horizon disassembly
planning, and a third to the flexible disassembly model. This indicates that
these three sections are enhancements of the basic model.

9 Cf. Jorjani/Leu/Scott (2004): Allocation of electronics components to reuse options,
p. 1135.
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Fig. 1.1 Structure of this work

The first extension of the basic model, (i.e., the profit optimal single-
period multi-core complete disassembly planning considering core condi-
tion, purity requirements, hazardous items, damaging, supply, labour time,
distribution restrictions, demand, disposal, recycling, reuse, commonality,
multiplicity, acquisition, disassembly, and disposal cost, as well as revenues
from reuse and recycling) is the incorporation of linear price-quantity and
cost-quantity dependencies for the core acquisition and item, material, and
waste distribution. (In the sequel price and cost are subsumed as price.)
This allows the selective removal of supply or distribution limits of the ba-
sic model, because with changing quantities, the prices change so that the
market behaviour of particular scenarios is approximated to some extent.
Here, an optimal solution with the mixed integer quadratic programming is
gained.
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To increase the freedom of approximation for the price-quantity depen-
dency, the approach is extended to piecewise linear price-quantity depen-
dencies. This allows a more detailed approximation, but leads to a model
with other properties for solving. And these properties require a different
solution method to find the optimal solution. In Sect. 3.3 an approach is
developed, which aims at using standard solver software (for mixed integer
quadratic and linear problems) so that the piecewise linear dependencies
can be adopted in practice.

A further extension of the basic model is the modelling of a multi-period
scenario with changing data and uncertain future data. In Sect. 3.4 a rolling
horizon planning model is developed, which tries to maintain a steady policy
and still allows for flexibility for changing data. The results of the planning
are evaluated with an ex-post optimal solution. This indicates that the
result of the rolling horizon planning is generally not an optimal but near-
optimal solution. Note that the model is not a stochastic one, even though
uncertainties are accounted for.

Another enhancement of the basic model is the consideration of incom-
plete disassembly. This introduces the disassembly depth (or level) as deci-
sion variable. A comprehensive model is developed in Sect. 4.2. This newly
added aspect includes portions of the disassembly sequencing. These por-
tions can be summarised as disassembly state, which is not the disassembly
sequence as such, but the result of it, i.e., the set of items and modules
gained after applying a disassembly sequence. The modelling of this prob-
lem is based on graphs and the optimal solution is gained by solving the
mixed integer linear problem with a standard solver. The integration of the
disassembly depth accounts for the flexibility in the disassembly processes.
To evaluate the benefits of this flexible disassembly planning, the solution
is compared to the basic model and the best two-stage approach.

With the gained solution of the planning, the quantities for the acqui-
sition of cores as well as the distribution of items, modules, material, and
waste are determined. Yet, these quantities are not detailed enough in order
to derive a specific instruction of how to disassemble a particular unit of a
core and to which usage options the items and modules should be assigned
to. The necessary steps of determining the required disassembly states and
the assignment of a particular unit of a core to a proper disassembly state
and the best usage options are developed in Sect. 4.4.

As becomes evident in Sect. 4.2, the problem of the flexible disassembly
planning, considering core conditions and the three usage options (reuse,
recycling, and disposal), leads to a large sized model. This is usually linked
with a relatively long solution time. In Sect. 4.5 four possibilities of speeding
up the solving are presented. These possibilities are derived from the content
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of this work and not so much a dedicated development of a heuristic solution
method. Nonetheless, the gained solutions are not necessarily optimal. But
a near-optimal solution is found in less time compared to the optimal one.

The alternative solution methods only regard the flexible disassembly
planning model. This means that the subsequent disassembly state and
usage option assignments have to be applied to these solutions as well.
This indicates the dotted arrow from “alternative solution methods” to
“disassembly path determination” in Fig. 1.1. Finally, Chap. 5 summarises
the work and gives implications for future research. Note that all figures in
this work are created by the author himself.



Chapter 2

Fundamentals

2.1 Topical placement

The disassembly planning belongs to the field of environmentally conscious
manufacturing and product recovery.1 This already indicates that the man-
ufacturing seems to play a role or the disassembly has influence on the
manufacturing, or both. This is a little bit surprising, but the steps before
the manufacturing, e.g., the design of a product, have a major influence on
the complete life cycle, which includes manufacturing and disassembling.
Because of this all-embracing influence of the design, several design direc-
tions with explicit environmental focus have been established. The main
three are design for environment (DfE), design for disassembly (DfD), and
design for recycling (DfR). The DfE focusses on the environmental impact
on the whole life cycle of a product. This starts with the extraction of ma-
terials and ends with the final disposal. In between the start and end, the
material or product could be reused and recycled many times in order to
avoid emission of harmful substances and excessive use of energy.2

Thus, the DfE can be understood as umbrella for all more special de-
sign directions, like DfD, DfR, and even design for assembly (DfA). But
since the focus is rather on the end of life of the products, DfD and DfR
are more relevant than DfA. The DfR concentrates on design attributes for
separating and recycling the comprised material in a cost-effective manner
at the product’s end of life.3 But the DfR should not be in the main focus

1 Cf. Ilgin/Gupta (2010): ECMPRO: A review , pp. 563–565.
2 Cf. Bevilacqua/Ciarapica/Giacchetta (2007): Development of a sustainable prod-
uct lifecycle, pp. 4073 et seq.
3 Cf. Masanet/Horvath (2007): Assessing the benefits of design for recycling , p. 1801.
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when it comes to disassembly planning, because the interest is primarily on
the embodied material. When items or modules should also be reused, the
DfD is the relevant design direction. According to the definition of disas-
sembly—which includes all planned processes that separate products into
modules, items, and/or material4—the DfR can be seen as one part of the
DfD. The reason is that deriving design issues for a planned process with the
result of material to recycle equals the goal of the DfR. Thereby, the DfD
is the combination of all design considerations to facilitate the disassem-
bly process (i.e., minimising the complexity of the structure of the product,
increasing the use of common materials and items, and easily removable fas-
teners and joint types).5 This especially includes an evaluation of a current
product design with, e.g., index-based approaches,6 and, moreover, design
recommendations to facilitate the disassembly of a product.7

But even though an optimal design is found for all phases of the life cycle,
the design does not have to be optimal at the end of life of the product.
This problem might occur because of changing needs for material or parts for
recycling or reuse, respectively, changes in legislation, too little estimated
abrasion of items, etc. Hence, the longer the life cycle the greater is the
danger of a suboptimal design. Note that long life cycles are positive in
terms of an environmental conscious manufacturing and product recovery.
Thereby, not necessarily the complete product has to have a long life cycle.
At least the embodied materials and items should have one. On the other
hand, it means that all aspects with regard to the product recovery need to
be flexible in terms of quantities, conditions, and limitations. This affects
not only the disassembly planning, but also the logistics.

The reverse logistics (as pendant to the forward logistics) is a branch
of logistics that focusses on reverse flows, i.e., from the consumer back to
the manufacturer or a company that is entrusted with the recovery of used

4 Cf. Seliger (2011): Montage und Demontage, p. S97.
5 Cf. Güngör (2006): Evaluation of connection types in DFD , p. 36.
6 Cf. Kroll/Hanft (1998): Quantitative evaluation of product disassembly, Kroll/
Carver (1999): Disassembly analysis, Veerakamolmal/Gupta (1999): Design effi-
ciency for disassembly, Zeid/Gupta (2002): Disassembly cost index , Villalba et al.
(2004): Recyclability index as a tool for DfD (in combination with Villalba et al. (2002):
Quantifying the recyclability of materials), Desai/Mital (2003): Evaluation of disassem-
blability, and Desai/Mital (2005): Design for disassembly. In a broader view the index
can also be a maximal process value reduced by disassembly cost, cf. Kwak/Hong/Cho
(2009): Eco-architecture analysis for end-of-life.
7 Cf. Viswanathan/Allada (2001): Configuration analysis to support product redesign,
Viswanathan/Allada (2006): Product configuration optimization for disassembly plan-
ning, and Giudice/Kassem (2009): End-of-life impact reduction.
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products so that the product or material is again usable in a market.8 This
includes the planning, implementing, and controlling of the backward flows
to the recovery or proper disposal site.9 Thereby, the retrieval of the used
products should be efficiently dealt with.10 Moreover, the view of reverse
logistics can also be extended to the inclusion of material selection aspects.
Hence, it is not just collecting and transporting products and material, but,
furthermore, the decision which recovery option (see below) is used.11 This
selection is already an aspect that is common with the disassembly planning,
only that after disassembling we call them usage option to differentiate
between general recovery option and the result of the disassembly.

The reverse flow is not independent from the forward flow. There exists
a strong impact from both flow directions on the capacities for storage,
transportation, etc. Thus, a simultaneous consideration is favourable, if not
necessary for an optimal planning. This combined consideration is focus of
the closed-loop supply chain.12 Thereby, the system is only a closed loop
when the product returns to the original producer. Otherwise, it is an open-
loop system with forward and reverse flow, which starts at a producer, goes
to a consumer, and ends at a different recovery company.13 Note that not
only end-of-life products cause a reverse flow. Also product recalls, service
and warranty returns, even rework, etc. can be seen as reverse flow.14

A main logistical aspect of the closed-loop supply chain is the placement
of facilities and the allocation of flows between them, i.e., the network design.
For this aspect it is already of interest what recovery options exist at this
stage.15 The common options are:16

• (direct) reuse,
• repair,

8 Cf. Fleischmann et al. (1997): Quantitative models for reverse logistics, p. 2.
9 Cf. de Brito (2003): Managing reverse logistics, p. 20.
10 Cf. Demirel/Gökçen (2009): MIP model for remanufacturing in reverse logistics,
p. 1197.
11 Cf. Jamshidi (2011): Reverse Logistics, p. 254.
12 Cf. Guide Jr./Jayaraman/Linton (2003): Contingency planning for CLSC , p. 278,
Ilgin/Gupta (2010): ECMPRO: A review , p. 567, and Savaskan/Bhattacharya/
Van Wassenhove (2004): CLSC models with product remanufacturing, p. 239.
13 Cf. Fleischmann et al. (1997): Quantitative models for reverse logistics, p. 4.
14 Cf. Zarandi/Sisakht/Davari (2011): Design of a CLSC model , p. 809, and Inder-
furth/Teunter (2001): Production planning and control of CLSC , p. 1.
15 Cf. Ilgin/Gupta (2010): ECMPRO: A review , pp. 571 et seq.
16 Cf. here and in the sequel Thierry et al. (1995): Strategic issues in product recovery,
pp. 118–120, de Brito (2003): Managing reverse logistics, pp. 61 et seq., and Goggin/
Browne (2000): Towards a taxonomy of recovery , pp. 179 et seq.
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• refurbishing,
• remanufacturing,
• cannibalisation,
• recycling,
• incineration, and
• disposal.

Thereby, the reuse option is the one with the least extra effort. This means
that the product can either be directly reused or minor repairs are done.17

This might apply to unused spare parts, resold products, or carriers and
packaging. The repair option returns a used product back to working order.
This comes along with a lower quality than the new product and could be
executed at the consumer’s location. It requires already some small amount
of disassembly and reassembly. The refurbishing is analogue to the repair,
but the used product is brought to a specific quality including a possible up-
grade in functionality. Nevertheless, the overall quality is lower than that of
the new product. The remanufacturing brings the product back to a quality
of a new product.18 Therefore, these products are “as good as new”.19 Can-
nibalisation or retrieval denotes the recovery of a limited number of parts
from the used product to be used for, e.g., repair work. Thereby, the focus is
not on the complete product anymore, but shifted to the constituent parts.
These parts can be single items or modules. When it comes to recycling,
incineration, and disposal, the original product (and its constituent parts)
is not of interest anymore. With recycling and incinerating material and
energy, respectively, are recovered. Lastly, the disposal represents the loss
of any value for today. It is quite possible, that land-filled waste is going
to be recovered in the future. This depends on technology and whether it
becomes economic beneficially.

These recovery options can be ordered according to several criteria. In
pursuance of Gerrard/Kandlikar, the preference ordering is reuse, re-
manufacturing, recycling, incineration, and lastly disposal.20 Even legisla-
tive regulations provide a preference ordering for waste, nowadays. Accord-

17 Cf. Fleischmann et al. (1997): Quantitative models for reverse logistics, p. 11.
18 Cf. Guide Jr./Jayaraman/Linton (2003): Contingency planning for CLSC , p. 278.
19 Companies like Caterpillar have even set up an extra brand (e.g., Cat Re-
man) to distribute these remanufactured products. Cf. http://catreman.cat.com/.
Other companies like Jungheinrich established a series for refurbished trucks
(e.g., Jungheinrich JungSTARs). Cf. http://www.jungheinrich.de/en/used-trucks/

jungheinrich-jungstars/.
20 Cf. Gerrard/Kandlikar (2007): Assessing the impact of the ELV Directive, p. 23.
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ing to German law, five waste handling options exist in the following order-
ing:21

1. avoiding,
2. preparing for reuse,
3. recycling,
4. other recovery, especially energy recycling and filling, and
5. disposal.22

Thereby, the reuse corresponds to avoiding, remanufacturing, refurbish, re-
pair, and cannibalisation, the preparing for reuse, material recycling to re-
cycling, energy recycling to other recovery, and disposal to disposal. Note
that “filling” is seen as disposal in this work.

Taking a look at the recovery options, we find that in many of them dis-
assembly is undertaken. It applies to repair, refurbishing, remanufacturing,
and cannibalisation, because only with disassembly the parts to exchange or
retrieve can be accessed. But most likely, disassembly is also necessary for
recycling, because not the complete core consists of material that is going
to be processed in the same way. Moreover, in an environmentally conscious
system disposal should be reduced as much as possible. This means that not
the complete core is going to be disposed of. At least hazardous material
and possibly recyclable material or reusable parts should be extracted and
processed separately. This again makes disassembly necessary. Furthermore,
we see that not only one recovery option has to be applied to a core (ex-
cept for product reuse, repair, refurbishing, and remanufacturing). All in
all, disassembly is one of the key issues in the product recovery.

When it comes to the planning of the disassembly, one might think that
it equals the assembly planning or that it is just the reverse of it. For some
aspects this might be the case, but definitely not for all. One indicator for
the necessity of a separate disassembly planning is the existence of quite a
few research articles in the literature. Moreover, Lambert lists significant
differences. These are:23

1. a not completely reversible assembly process,
2. less value added obtained in disassembly processes,

21 Cf. 6 KrWG (Gesetz zur Frderung der Kreislaufwirtschaft und Sicherung der um-
weltvertrglichen Bewirtschaftung von Abfllen – Kreislaufwirtschaftsgesetz).
22 In the literature (land) filling and disposal are synonymously used terms. Why the
filling is differentiated from the disposal in German law and equal to energy recycling is
not clear. It might be that with filling the theoretical possibility exists to recover this
waste later and process it with new techniques. In this context, the disposal might be an
option, which expresses the final loss of the material (e.g., ocean dumping).
23 Cf. Lambert (2003): Disassembly sequencing: A survey, pp. 3721 et seq.
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3. uncertainty about the condition of the constituent parts,
4. uncertainty about the quantity of core supply,
5. a variety in supplied products,
6. mainly human labour instead of automated assembly lines and robots,

and
7. usually not complete disassembly, which introduces the disassembly

depth into the consideration.

In addition to these properties, there might also exist uncertainty about
what parts the core consists of. Depending on the product the consumer
might have replaced parts of the product by different ones. If this is the
case, non-genuine parts are inserted into the product.

For the above reasons the separate research field of disassembly planning
is established. As mentioned above, disassembly occurs in different recov-
ery options, which results in planning problems with particular properties.
In addition, keeping the developed models understandable and usable the
models should include all necessary aspects. And in general, the necessary
aspects are problem dependent. A first group of such problems is the repair
and refurbishing. Here, the cores are partly disassembled in order to reach
the damaged parts and afterwards reassembled. The main focus is clearly
to gain a functioning product with as little disassembly and reassembly ef-
fort as possible.24 This group of problems shows parallels to maintenance
planning.

A second group is the disassembly with regard to remanufacturing.
Thereby, the cores are disassembled “completely” and reassembled to gain
an “as good as new” product. From a disassembly point of view, it is a spe-
cial case of the repair or refurbishing—namely, the worst case—, because
all other disassembly options result in an incomplete disassembly. On the
other hand, from a planning point of view, this worst case of the disassem-
bly—the complete disassembly—is easier than the planning of incomplete
disassembly, which incorporates the disassembly depth as a further decision
to make. The term completely with regard to the disassembly does not liter-
ally mean a complete disassembly. If it would be a complete disassembly in
the literal meaning, all items, i.e., every semiconductor, screw, etc., would
be separated from each other and no connection between items would re-
main. This is usually not the case. In general, groups of items stay together,
e.g., a relay. Such a relay could be further disassembled but no one does it,
because it is seen as an item.25 This view is a level of abstraction necessary

24 The interpretation of disassembly and reassembly effort depends on the decision maker.
25 Note that there might exist situations where a relay must be disassembled, e.g., for
valuable material.
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for modelling disassembly processes. Otherwise, the model becomes too big
to handle. Hence, depending on the level of abstraction, an item could be as
big as a complete engine of a ship (or even bigger) or as small as a transistor
only visible with an electron microscope.

The last group is the disassembly planning. It embodies the recovery
options cannibalisation, recycling, incineration, and disposal. These options
do not aim to have a complete product in the end. The individual items and
modules after the disassembly might be used for reuse, recycling, incinera-
tion, and disposal.26 Again, the disassembly can be complete or incomplete.
Especially this group of the disassembly planning is characterised by the
diverging structure, i.e., one core leads to several items and modules. Since
the disassembly planning is the focus of this work, a more detailed look onto
the existing planning problems can be found in the following.

2.2 Literature review on disassembly planning

The term disassembly planning comprises many aspects around the concrete
disassembly process. It includes product representation, related product de-
sign/redesign issues, and disassembly sequencing with disassembly level and
end-of-life options.27 But when taking a look in the literature, one might
find the term as a kind of generic term. Hence, in the sequel we shall use
it as such. Under this generic disassembly planning five main fields have
emerged that preferably consider quantitative problem statements. These
five are disassembly sequencing, disassembly-to-order planning, disassem-
bly scheduling, disassembly line balancing, and flexible disassembly system
planning. Thereby, a

Disassembly sequence is a listing of subsequent disassembly actions,
where an action is, e.g., dividing an assembly into two or more mod-
ules or separating one or more connections between parts.28 Finding the
preferably optimal sequence of all possible sequences is the goal of the
disassembly sequencing. The

Disassembly-to-order planning aims at finding the optimal quantities
of cores to be disassembled in order to meet the demand of parts and ma-
terial from a mix of cores. Thereby, these cores can have parts in common.
If the common parts occur across different cores, the term commonality

26 Note that incineration is seen as a material recycling option in the sequel.
27 Cf. Lee/Kang/Xirouchakis (2001): Disassembly planning and scheduling , p. 697.
28 Cf. Lambert (2003): Disassembly sequencing: A survey, p. 3721.
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is used, and if they occur within a core, we find the term multiplicity
in the literature.29 In general, the optimisation criterion is either a cost
minimisation or a profit maximisation.30 The

Disassembly scheduling can be seen very similar to the disassembly-to-
order planning as “problem of determining the order quantity of the used
products to fulfil the demand for disassembled parts.”31 But scheduling
should furthermore include a timing of disassembling.32 This does not
mean that scheduling is always a multi-period planning. It just means
that, in addition to the quantities, the ordering is relevant for the decision
maker. The

Disassembly line balancing solves the problem of assigning disassem-
bly tasks to an order of stations such that the disassembly precedence
relations are satisfied.33 The optimisation criteria can be profit, cost,
(cycle) time, number of workstations, levelled utilisation, etc. or combi-
nations of these.34 The

Flexible disassembly system planning is another relative big research
area. It belongs to the field of automated disassembly and has a different
(machine) layout than the disassembly line.35 Nevertheless, the planning
is somewhat similar to the line balancing with the exception of the layout
and the focus on the automation, i.e., the aim is to plan the disassem-

29 Cf. Taleb/Gupta (1997): Disassembly of multiple products, p. 950, Lambert/Gupta
(2002): Demand-driven disassembly optimization, p. 123, and Lee et al. (2004): Disas-
sembly scheduling , p. 1360.
30 Cf. Lambert/Gupta (2002): Demand-driven disassembly optimization, p. 122, to-
gether with Ilgin/Gupta (2010): ECMPRO: A review , p. 579.
31 Lee/Xirouchakis/Züst (2002): Disassembly scheduling with capacity constraints,
p. 697.
32 Cf. Kim/Lee/Xirouchakis (2006b): Two-phase heuristic for disassembly scheduling ,
p. 196.
33 Cf. Altekin/Kandiller/Ozdemirel (2008): Profit-oriented disassembly-line balanc-
ing, p. 2677.
34 Cf. McGovern/Gupta (2007): Balancing method and GA for disassembly line bal-
ancing, p. 693, Altekin/Kandiller/Ozdemirel (2008): Profit-oriented disassembly-
line balancing , p. 2677, Koc/Sabuncuoglu/Erel (2009): Disassembly line balancing
using an AND/OR graph, p. 870, and Agrawal/Tiwari (2008): ACO to disassembly
line balancing and sequencing , p. 1414.
35 Cf. Ilgin/Gupta (2010): ECMPRO: A review , p. 579, and Wiendahl et al. (2001):
Flexible disassembly systems, p. 723.
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bly with values (e.g., cost and revenues) and problem specific resources
considered.36

There also exist approaches which combine, e.g., sequencing and schedul-
ing aspects or sequencing and disassembly-to-order aspects,37 without an
established taxonomy. These are still subsumed as disassembly planning in
the sequel. Another interesting albeit small research area is the active dis-
assembly. Here, the focus is on the self-disassembly of a core or parts of
it.38

In preparation of Table 2.1 containing the relevant literature, the used
properties are discussed in the sequel. (The corresponding references to the
properties can be found in Table 2.1.) When it comes to disassembly plan-
ning, one has to deal with uncertainties in general. Nevertheless, there exist
deterministic models. Either because of valid information about the cores
or the uncertainty is just neglected. For example, valid information can be
gained by testing all incoming cores before the planning, which includes
RFID, or by permanent maintenance of products by a company, which cor-
porates with the disassembling facility. A second category is the one of
quasi-stochastic models. Thereby, “quasi-stochastic” denotes a combina-
tion of deterministic and stochastic models in this work. This applies to
planning situations, where uncertainty exists, but the probabilities, rates,
and expectations of uncertain values are used in a deterministic style plan-
ning. The last type in this context is the stochastic modelling and plan-
ning. Models in this category explicitly incorporate distribution or density
functions of stochastic variables into the model.

The considered uncertainties we find in the relevant literature regard the
condition or quality of the cores and the quantities (i.e., yields or availabil-
ity). In addition, the possible damaging during the disassembly process is
another uncertainty to cope with. In this context, some articles differentiate
between destructive and non-destructive disassembly.

Furthermore, a differentiation of planning situations covering just a single
or multiple periods is useful, too. In this regard, the single-period planning is
seen synonymously to the static planning, because within the single period
(which could be infinitely long) no changes in data occur. For the multi-

36 Cf. Tang/Zhou/Caudill (2001): Integrated approach to disassembly planning and
demanufacturing operation, p. 778, and Williams (2007): A review of research towards
computer integrated demanufacturing , p. 773.
37 Cf. Santochi/Dini/Failli (2002): Computer aided disassembly planning and Xan-
thopoulos/Iakovou (2009): On the optimal design of disassembly.
38 Cf. Ijomah/Chiodo (2010): Application of active disassembly to extend profitable
remanufacturing.
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period planning a change of data (quantities, limits, etc.) from period to
period is assumed. Thus, a multi-period planning is assumed to always be
dynamic in our overview. Moreover, the dynamic planning could further
be clustered in planning with just different values of parameters for each
period and planning with changing values of parameters. The latter could
also be seen as dynamic planning with uncertainty, because of the fact that,
when parameter changes within the overall planning occur, the parameters
are not certain. For our consideration the distinction between multi-period
(dynamic) and single-period (static) is sufficient.

The next aspects are concerned with the input side of the disassembly
process. Here, multi-core and single-core approaches can be differentiated.
Multi-core indicates the simultaneous consideration of more than one dif-
ferent core, e.g., a car and a truck. On the other hand, with a single core
approach either the car or the truck is planned, but not both together.
Thereby, it does not matter if only one unit or hundreds of units of the
same core are considered. A further property tied to the cores is that of
common parts, which is already discussed above. In addition, cores can
contain hazardous parts. These can be as small as batteries or just ma-
terial like lead. In this case a special treatment is necessary. Besides, for
an economic consideration certain cost factors might be of interest, e.g.,
transportation and order cost, which are subsumed as acquisition cost.

In addition, the availability of cores might be limited, which is a supply
limitation for the disassembly process. Besides this, further limits can ex-
ist—like distribution, (cycle) time, disassembly cell sizes, and storage space.
Along with the storage space limitation the inventory holding cost can
also be of interest. This cost component might be extended by set-up cost
and disassembly cost. The latter accrue with almost every disassembly
process—maybe not with active disassembly. When disassembling a core
completely the disassembly cost is relatively high compared to an incom-
plete disassembly. Therefore, an incomplete disassembly planning is very
promising. But when a core is literally not completely disassembled, it does
not mean that the planning is an incomplete one. The differentiation is
carried out by the number of relevant disassembly states. The disassembly
state is the result of the disassembly process in terms of which items and
modules are gained from the core. And if this set of items and modules is
identical for all units of a core and a priori given, it is complete disassem-
bly planning, because the modules can be seen as an (abstract) item. If,
on the other hand, the disassembly state or states need to be determined
with the planning, it is incomplete disassembly planning. Note that even for
a complete disassembly many disassembly sequences might exist. Besides,
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the disassembly state corresponds to the disassembly depth or disassembly
level.

After disassembling the cores the gained parts can be reused or resold,
recycled, disposed of, etc. Which options are considered depends on the
problem in focus. In some articles there exist no differentiation, e.g., in the
case of non-destructive disassembly with the goal to minimise the disassem-
bly time. In other publications all three of them are distinguished, especially
when it comes to revenues and cost considerations. Moreover, for (material)
recycling the purity of the material might be an issue.39 But interestingly
this is hardly to find in the literature. In addition, for every disassembly
option a demand might be given.

The final properties regard the solving of the predominant quantitative
approaches. The properties include whether an optimal or heuristic (i.e.,
near-optimal) solution is sought. If none of these two apply, one just tries
to find a feasible solution. To define what is optimal for the focussed prob-
lem, the objective must be given. The most common are minimising a
time or cost measure or maximising the profit (or something similar like the
end-of-life value). In addition, the simultaneous consideration of more than
one objective is denoted as multi-criteria optimisation. In relation to the
proposed method in this work, the solution approaches based on some kind
of linear programming are listed separately in the column X-LP. Possible
entries are linear programming (LP), integer linear programming (ILP), bi-
nary integer linear programming (BILP), mixed integer linear programming
(MILP), quadratic programming with linear constraints (QLP), and mixed
integer quadratic programming with linear constraints (MIQLP). These can
be combined with other solution approaches or other solution approaches
are used alone (i.e., without any kind of LP). As with the linear program-
ming, solution approaches based on an arbitrary graph—be it a simple
disassembly tree or a complex network—is marked explicitly in relation to
this work.

The relevant literature is summarised in Table 2.1. In addition to the
summary, the thesis of Langella presents and compares several models
for disassembly-to-order systems.40 It includes deterministic and stochastic,
single and multi-period, as well as single and multi-core models to find
optimal solutions. Moreover, heuristics are presented, too. Even though the
list contains quite a few entries, it could be extended by further publications
from existing literature reviews and surveys. Reviews covering more than
one research area are the ones from Santochi/Dini/Failli, Güngör/

39 Cf. Das/Naik (2002): Process planning for product disassembly , p. 1340.
40 Cf. Langella (2007a): Planning demand-driven diassembly for remanufacturing .
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ö
r
/
G
u
p
t
a
(1

9
9
7
)

x
d
t

x
G
ü
n
g
ö
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Gupta, and Ilgin/Gupta.41 Reviews with a focus on scheduling can be
found from Lee/Kang/Xirouchakis and Kim/Lee/Xirouchakis.42

As becomes clear in the literature summary table, quite a few articles about
disassembly sequencing exist. Hence, the number of reviews is greater than
for the other research areas. We find reviews from Tang et al., Dong/
Arndt, Lambert, and Kang/Xirouchakis.43 Lastly, two reviews in the
field of flexible disassembly systems by Wiendahl et al. and Duţă/Filip
shall be mentioned for the interested reader.44

In Table 2.1 exist entries with a combination of deterministic and un-
certainty marked in the area of flexible disassembly systems. This indicates
that the considered system reacts on unknown situations, but once the part
is identified, it works deterministically. In addition, flexible disassembly sys-
tems are single core systems, because only one part at a time is disassembled
in general. But when it comes to specific planning (way ahead of the disas-
sembly) similar to scheduling, multiple cores and parts might be considered,
likewise stochastic planning.

When taking a look at the summary table, we notice that the purity
consideration is basically not present in the literature even though it is
identified as relevant aspect.45 To start the integration in the planning one
should choose a superordinate planning like the disassembly-to-order plan-
ning. In addition, the fact of hazardous items and material as well as the
condition of the cores are rarely to find.

There exist a few entries concerning the incomplete disassembly. Surely,
they are diverse and cover aspects from determining just one disassembly
state per core46 up to several states per core.47 But even the possibility of
several states per core is rather limited, because a tree structure is assumed

41 Cf. Santochi/Dini/Failli (2002): Computer aided disassembly planning, Güngör/
Gupta(1999): Issues in product recovery, and Ilgin/Gupta(2010): ECMPRO: A review .
42 Cf. Lee/Kang/Xirouchakis (2001): Disassembly planning and scheduling and Kim/
Lee/Xirouchakis (2007): Disassembly scheduling.
43 Cf. Tang et al. (2002): Disassembly modeling, planning, and application, Dong/
Arndt (2003): A review of current research on disassembly sequence generation, Lam-
bert (2003): Disassembly sequencing: A survey, and Kang/Xirouchakis (2006): Dis-
assembly sequencing for maintenance.
44 Cf. Wiendahl et al. (2001): Flexible disassembly systems and Duţă/Filip (2008):
Control and decision-making process in disassembling.
45 Cf. Das/Naik (2002): Process planning for product disassembly , p. 1340.
46 Cf. Vinodh/Kumar/Nachiappan (2012): Disassembly modeling, planning, and lev-
eling, p. 798.
47 Cf. Lee/Cho/Hong (2010): A hierarchical end-of-life decision model .
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in disassembly-to-order planning.48 Of course, in disassembly sequencing a
more detailed planning is done, which can be seen by the use of and/or
graphs or other approaches that go beyond a disassembly tree structure.
Here, a more detailed planning of the incomplete disassembly with regard
to the optimal quantities to order, to disassemble, to distribute, to recycle,
and to dispose of is necessary. In addition, this more detailed planning would
also meet the existing flexibility of the today’s disassembly practice, which
is usually manual labour and highly flexible.49 For this reason we call the
incorporation of a more flexible disassembly process in the planning flexible
disassembly planning. The supplement “to order” is neglected here, but
a planning without considering information about demand or supply is not
to favour.50

Note that the term flexible disassembly planning must not be mistaken
for flexible disassembly system planning. The latter is the planning of a
system that is the pendant to the flexible manufacturing system, only that
it is used for disassembly instead of assembly. On the contrary, in this work
the

Flexible Disassembly Planning is concerned with the determina-
tion of quantities of multiple cores to acquire, to disassemble these into
items and modules, and to distribute (i.e., reuse), recycle, or dispose
of the gained items and modules while considering recycling purities,
core conditions, hazardous items, item damaging (where applicable),
and several capacities (supply, demand, labour time, storage, etc.).
Thereby, each unit of a core can be disassembled into an individual
disassembly state.

This again requires the representation of arbitrary product structures and
not just tree-like disassembly structures. Furthermore, it is advisable to
consider multiple cores in the planning, which includes commonality and
multiplicity as inevitable aspects.

48 Cf. Langella (2007b): Heuristics for demand-driven disassembly planning, p. 556.
49 Cf. Bley et al. (2004): Human involvement in disassembly.
50 The to-order planning is a special case of the planning considered in this work, because
the distribution is going to be restricted by a lower and an upper limit. If these two limits
are set to the same value it is equivalent to the given demand in the to-order planning.
Thus, the planning in this work could be seen as a generalised disassembly-to-order
planning. Therefore, the supplement to-order is neglected for the aspects developed in
this work.
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A favourable objective of the flexible disassembly planning is the profit
maximisation, because it includes more than just the various costs. If a valid
quantification, e.g., of time units into monetary units, is possible, even the
trade-off between disassembly time to the cost and revenues can be incorpo-
rated. In any case, the planning can be extended to multi-period scenarios,
too. In addition, further aspects from disassembly sequencing or scheduling
could be integrated, but as we will see in Chap. 4 the incorporation of the
core and item condition makes the planning complex.

The multi-period planning can be found in several disassembly scheduling
publications. But in the disassembly-to-order planning not so many publi-
cations about multi-period planning exist. The deterministic ones that can
be found in the literature use different values for the planning in subsequent
periods which do not change. Of course, this is the nature of a deterministic
planning, that the planning relevant data is known a priori. But what hap-
pens when uncertainties according to the supply or distribution occur? Two
stochastic multi-period models for disassembly scheduling can be found in
the summary table. On the other hand, no quasi-stochastic approach could
be found, even though one might assume, that a quasi-stochastic approach
is more intuitive for practitioners. One quasi-stochastic multi-period multi-
core model is presented in this work. It can cope with highly dynamic data
that not only differs from period to period, but also changes during the plan-
ning. Moreover, the decision maker can derive explicitly contracting recom-
mendations for supply and distribution for future periods (see Sect. 3.4). To
the best of our knowledge, this cannot be found in the literature.

Before we move on to a first disassembly-to-order planning as basis for
the considerations in this work, a last term shall be discussed. It is the selec-
tive disassembly. Depending on the research area the term selective has
different meanings. In the disassembly-to-order planning the term selective
is used by Kongar/Gupta to indicate the existing choice between item
reuse and material recycling.51 On the contrary, in disassembly sequencing
the term selective indicates the removal of only a necessary subset of parts
of a core in order to retrieve a selected part.52 From the definitions of the
selective disassembly, we find that the latter (i.e., for the sequencing), the
classification of an incomplete disassembly covers the selective disassembly
totally. For the disassembly-to-order planning this distinction is not nec-
essary, because if cores are disassembled, in most cases not all parts can

51 Cf. Kongar/Gupta (2006b): Disassembly to order , p. 555.
52 Cf. Srinivasan/Gadh (2002): Selective disassembly sequence with geometric con-
straints, p. 349, Shyamsundar/Gadh (1996): Selective disassembly of virtual prototypes,
p. 3159, and Kara/Pornprasitpol/Kaebernick (2006): Selective disassembly sequenc-
ing, p. 37.
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be reused. Presumably, there is always a fraction that has to be disposed
of. Hence, here is the first selection necessary. But this selection is not
considered selective disassembly. The extension by a recycling option does
not—from the author’s point of view—legitimate a special problem class,
as every disassembly planning should be “selective” in this prospect.

After this overview of the relevant aspects of the disassembly planning, a
first disassembly-to-order planning model by Kongar/Gupta is discussed.
It contains important aspects, like the core condition, damaging, etc. It is a
model considering complete disassembly, which facilitates the access to the
matter. Unfortunately, the model makes some corrections necessary, but
nevertheless it is a good access to the disassembly planning we focus on in
this work.

2.3 A first disassembly-to-order planning model

Among the works mentioned in the literature review, the paper by Kon-
gar/Gupta in 2006 is one that combines many aspects that need to be
considered in the disassembly planning. These are acquisition, disassembly,
transportation, and disposal cost, revenues, condition of the cores, as well as
damaging. The approach is for complete disassembly, which is a good start
into the disassembly planning. Furthermore, the approach is not limited to
only a single core, which makes it possible to meet the demand for items
and material by a mix of the available cores.53 The model structure, i.e., an
illustration of options to assign quantities to, is depicted in Fig. 2.1.

Unfortunately, the model shows some inconsistencies. These are marked
by the grey boxes in the figure and are discussed in the sequel. The authors
include two sources of revenues and in total eleven types of cost in their
model. A simple example of 100 cores to be disassembled shall illustrate the
model. For illustration purposes, we do neither consider multiple items nor
material types. Each node of the tree in Fig. 2.1 holds information about
the corresponding variable of the model (e.g., Y ), the exemplary quantity
(e.g., 100), and the corresponding revenues or cost (e.g., take-back cost).
(The term “cost” is omitted in the figure for clear arrangement.)

Starting with 100 cores Y they might be disassembled for storage V , reuse
X, recycling R, or disposal L. The sum of the cores in the four categories
must equal 100. For the storage and the disposal the considerations end
here. The items intended to be reused are separated in those that cannot

53 Cf. Kongar/Gupta (2006b): Disassembly to order , pp. 552–559.
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Fig. 2.1 Model structure

be reused (X(1 − δ), with δ being the combined fraction of functioning,
genuine, and undestroyed items) and the ones that can be reused (i.e., X ·δ).
Out of the reusable items the demand D is satisfied. The 15 destructively
disassembled items intended for recycling are recycled within the facility.
The resulting quantity of recycled material RQ depends on the weight W
and a recyclable percentage PRC of the recycled items. From this recycled
material only a fraction of 1− γ (γ is the fraction of non-genuine items) is
of the correct material type and thus can be used to meet the given demand
DR. Furthermore, a fraction of R · γ is transported to the disposal site.54

The five grey nodes in the figure are not considered in the model, but are
important for illustrating missing item flow and absent cost considerations.
Again, let us consider the items for reuse. The 80 items are non-destructively
disassembled which leads to the corresponding cost. The unusable fraction
of 1−δ is transported to the disposal site, but no disposal cost are considered
for this fraction. Out of the 30.4 usable items only 25 are demanded. These
25 items are transported to the distribution site and generate revenues. But,
the exceeding 5.4 items are not considered in any way. The same applies

54 In addition, the following values are used in the example: δ = 0.38, γ = 0.2, W = 2.5,
and PRC = 0.75.
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to the recycling path of the tree. The fraction of R · γ, that is transported
to the disposal site, is not considered with disposal cost. The remaining
fraction R(1 − γ) could be the basis for the material consideration, but is
neglected here. This would be no problem, if the separation of γ and 1− γ
was consequently applied after the material transformation.

Parallel to the just mentioned aspects of the recycling path, a given per-
centage of each item is the result of the recycling process. This quantity
represents RQ which is basis for the recycling cost and the revenues, even
though only DR are transported to the distribution site. The pendant to
RQ, which is R · W (1 − PRC) is not considered by the authors. Interest-
ingly, in the paper by Veerakamolmal/Gupta, that holds the data for
the case example, it is stated with regard to PRC, that “the portion not
recycled must be properly disposed of”55. In addition, the demand exceed-
ing quantity of 0.5 is also not considered. A separate calculation of RQ · γ
is not necessary, because it is part of the fraction of R · γ.

The presented model includes a storage option, even though it does not
consider multiple periods. It is also not a static or stochastic model that
includes safety stock issues. Furthermore, there is no possibility to empty
the storage, e.g., by selling the items. And lastly, the storage is not intended
for material. As it seems from the model perspective the storage option
equals the disposal and is therefore unnecessary.

In addition, the given optimal solution of their case example is not fea-
sible (see appendix A). This alone is not a problem, but it decreases the
understanding of their approach. In addition, missing information about
the relationship between items and the material type makes it impossible
to reproduce the results. In the paper the case example is based on (i.e.,
the paper by Veerakamolmal/Gupta)56 no information can be found
about material types, either.

With all these inconsistencies a sound modelling and application in prac-
tise is not possible. Therefore, a new model for planning complete disas-
sembly with the aspects included in the above mentioned model is the start
of the considerations in this work. In addition to the aspects above, a re-
quired purity level by the recycling company (or companies), labour time
limitation, and special treatment of hazardous items is included. Thereby,
the influence on the item usage caused by the expected conditions and the
item and material flow inconsistencies are cleared.

55 Veerakamolmal/Gupta (1999): Design efficiency for disassembly, p. 86.
56 Cf. Ibid..



Chapter 3

Complete disassembly planning

3.1 Basic model

3.1.1 Aspects to include in modelling complete
disassembly

Next to Kongar/Gupta, the considerations are also motivated by the lo-
cal city cleaning company SR-Dresden1 in Dresden, Germany. This company
takes back the cores from collection points and disassembles the cores for
material recycling. The material recycling is conducted by other companies.
The disassembly company does not decompose the cores totally. For exam-
ple, only certain capacitors are removed from circuit boards, because of the
hazardous material they consist of. But even though the disassembly is not
complete it can be modelled as a complete disassembly by modelling mod-
ules as items. This is possible because they are never further disassembled.
In addition, all cores are disassembled in the same way. The disassembly
is conducted manually2 and an important issue is the compliance with the
required material purity by the recycling companies, which is not considered
by Kongar/Gupta in their approach.3

Kongar/Gupta differentiate explicitly between non-destructive and
destructive disassembly and base their cost calculation on the resulting item
only. In addition, it is further assumed that when disassembling one item

1 http://www.srdresden.de.
2 Manual disassembly is still state of the art. Cf. Duţă/Filip (2008): Control and
decision-making process in disassembling, p. 25.
3 Cf. Kongar/Gupta (2006b): Disassembly to order .

C. Ullerich, Advanced Disassembly Planning,
DOI 10.1007/978-3-658-03118-3_3, © Springer Fachmedien Wiesbaden 2014
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destructively all other items are unaffected. There might exist cases where
this is applicable, but in most cases this assumption cannot hold. To give
an example let us consider the destructive disassembly of a car door. One
destructive way of separating a door from a chassis of a car is just pulling
hard enough. The result is a disconnected door and most likely a damaged
chassis. Another destructive method is cutting the hinges which leads to a
chassis with remains of the hinges. The point is that when disassembling an
item destructively not only the item but the other items it is connected to
are affected also.

Another problem occurs when referring the cost to the items. For in-
stance, a nut and a bolt with the nut screwed on the bolt are two connected
items. When unfastening the nut from the screw the core is completely dis-
assembled. And the last item is automatically disassembled with the next
to last. Thus, no work and no cost occur for the last item. One approach
could be that the last item gets the cost factor zero. But, in a more complex
core the last item is not always the same. This depends on the disassembly
sequence. Thus, assigning the correct cost requires the determination of the
optimal disassembly sequence for each possible disassembly result (including
the items destroyed by the disassembly process) in advance and a subsequent
cost assigning to the items. In theory this results in a determination of 2n

optima for a core consisting of n items in the worst case for complete disas-
sembly. This can become too extensive to calculate. Therefore, if we assume
that the resulting items after the disassembling can be used for reuse and/or
recycling and that the cost does not differ,4 the disassembly cost only de-
pends on the number of cores and the complexity decreases significantly,
because only one optimal disassembly sequence needs to be determined. For
the example in Fig. 3.1 the optimal disassembly sequence is one of the ways
through the graph from the node (AABC) to the node AABC. All other
nodes of the lowest level are ignored.5

A basic model to determine the optimal quantities of cores to be disas-
sembled into items to reuse, recycle, or dispose of is displayed in Fig. 3.2.
Thereby, the QC, QI, QR, and QD denote the quantities of cores, items, recy-
cling material, and waste, respectively. The XI, XR, and XD represent the
number of items assigned to reuse, recycling, and disposal, respectively. The
X are the decision variables, because the Q can be easily calculated using

4 Non-destructive disassembly is assumed.
5 In Fig. 3.1 the “(. . . )” indicate modules with their constituent items and Ä indicates
that item A is damaged during the destructive disassembly. An item outside the brackets
is a single item. In total, 60 sequences are possible for a mix of non-destructive and
destructive disassembly. On the contrary, if only non-destructive disassembly is conducted
only three sequences are necessary to consider.
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Disassembly state graph

Fig. 3.1 Complexity of complete disassembly for illustrative example

the X. The quantity of cores to acquire QC in units determines the acquisi-
tion and disassembly cost. Note that the acquisition cost includes transport
and take-back cost. On the other side, the quantity of items QI in units,
material QR in kg, and disposal QD in kg are the basis for the revenues of
items to reuse, revenues for material, and disposal cost, respectively. Note
that the transportation cost is included in the revenues or disposal cost.
The transformation from units to material is done by multiplication with
the weight w in kg per unit.

The outgoing quantities are all limited by the demand DI and DR for
items and material, respectively.6 Further, the number of items to reuse is
limited to genuine, functioning, and undamaged ones. The items of cores
can be clustered according to their condition (see Fig. 3.3). Thereby, the
condition is assumed to be unique for each item in a core. Items can be
genuine or non-genuine. A genuine item is either an item that is in the core
since the production of the core or a replaced item which is identical to the
original item. Thus, a non-genuine item is a replaced item in the core that

6 Note that the demand is an upper limit. To fix the demand as in the to-order planning,
the lower limit (introduced later) needs to be set to the same value.
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Fig. 3.2 Basic model structure for complete disassembly
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Fig. 3.3 Probability tree of core condition and damaging

is not identical to the item put in the product during production. Thereby,
it is not important if the replaced item is even better than the original
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one. The probability that an item is non-genuine is denoted by ζci for every
core c and item i.7 A second differentiation is if an item is functioning or
defective. This differentiation is only necessary for genuine items, because
non-genuine items have to be recycled or disposed of no matter if they are
functioning or not. The probability for an item being defective is denoted by
ηci. A third differentiation regarding the condition can be done according
to the material a non-genuine item consists of. Non-genuine items are either
recycled or disposed of (see above). But the replaced non-genuine item can
still be of the same material as the genuine one. If so, the non-genuine item
can be used for recycling or disposal. If the non-genuine item is made of
a different material, the non-genuine item must be disposed of, because it
is assumed to be impossible to consider all possible materials non-genuine
items consist of. The ιci denotes the probability that an item consists of the
wrong material. With a probability of (1− ιci) it is recyclable.

A further influence on the usability of items for reuse is the damage dur-
ing the disassembly. Of course, this is only relevant for genuine functioning
items because all other items have to be recycled or disposed of anyway. The
damaging is not a core condition because it is assumed that the damaging
probability θci only depends on the disassembly process, but it belongs to
the determination of the probabilities an item has to be disposed of or can
be recycled or reused.

As depicted in Fig. 3.3, with a probability of ζci ιci an item has to be
disposed of because it is non-genuine and of the wrong material. Thereby, it
is assumed that all mentioned probabilities are independent. On the other
hand, an item can be reused with a probability of (1− ζci)(1− ηci)(1− θci),
because it is genuine, functioning, and undamaged. But a reusable item
can also be recycled or disposed of. Thus, with the combined probabilities
bounds of numbers of items can be identified.

To illustrate the above mentioned an example of disassembling 100 units
of a core c shall be given. Let us further focus on just one item i of the core,
such that 100 of these items in different conditions are gained. The proba-
bilities for the three considered conditions and the damaging are ζci = 0.2,
ηci = 0.5, and ιci = 0.05 and θci = 0.1, respectively. Given these probabili-
ties we expect 100(1− ζci)(1− ηci)(1− θci) = 100 · 0.8 · 0.5 · 0.9 = 36 items
to be reusable, i.e., items that are genuine, functioning, and undamaged.
We further expect 100(1 − ζci ιci) = 100 · 0.99 = 99 items to be recyclable.
On the other hand, we expect 100ζci ιci = 100 · 0.01 = 1 item to have to
be disposed of because it is non-genuine and consists of the wrong material.

7 In Fig. 3.2 the indices are neglected for a better overview.



38 3 Complete disassembly planning

Within these limits any allocation of items for reuse, recycling, and disposal
is feasible. Hence, possible partitions are

• 36 items reuse, 63 items recycling, and one item disposal,
• zero items reuse, zero items recycling, and 100 items disposal,
• 25 items reuse, 50 items recycling, and 25 items disposal, etc.

Of course, the calculated values are expected values. This means that for
a given batch the actual number of non-genuine items with the wrong ma-
terial could be three instead of one. To avoid problems one could estimate
the probabilities to the disadvantage of the company or consider a more
thorough stochastic planning that includes, e.g., penalty costs for unmet
demand as Kim/Xirouchakis presented.8 Eventually, the discrepancy be-
tween expected and actual numbers lessens with larger numbers. Thus, we
assume this effect being negligible and the deterministic model is rather
straight forward to facilitate the understanding of the problem.

As mentioned earlier, material purity is another key issue in disassembly
planning. The recycling company can specify certain purity levels of the
material they take for recycling. The purity property of an item is specific
to the item of a core and the recycling process. We denote bins, lattice
boxes, boxes, containers, etc., where the items are collected in for material
recycling, as boxes r. Let us assume there exists a box for metal, a second for
ceramics, and a third for plastics. Let us further assume that an exemplary
item A consists of 40 g steel, 15 g glass, and 45 g plastics. In total the item
weighs 100 g. Putting the item in the box for metal results in a purity of 40%.
On the contrary, putting it in the box for plastics 45% purity of plastics is
gained. Depending on the required purity, putting certain items in boxes is
not allowed. But there exists the possibility to balance the impurity with
other items of higher purity. An example could be the adding of one item B
containing just 50 g steel. Putting both items in the box leads to 90 g steel
and 150 g material in total. Thus, a purity of 90

150 = 60% of metal is achieved.
The beneficial fractions πcir of the two items are displayed in Table 3.1. The
glass is undesirable, because no glass box exists. Derived from this, the sum
of the beneficial fractions per item does not have to be 100%. Furthermore,
this approach also allows several quality levels for the same material (e.g.,

8 Cf. Kim/Xirouchakis (2010): Capacitated disassembly scheduling. For stochastic
planning in disassembly the reader might find information in: Teunter (2006): Op-
timal disassembly and recovery strategies, Inderfurth/Langella (2006): Heuristics
for disassemble-to-order problems, Tian et al. (2012b): Probability evaluation models of
product disassembly cost , Li et al. (2009): Stochastic dynamic programming based model
for re-manufacturing system, and Agrawal/Tiwari (2008): ACO to disassembly line
balancing and sequencing .
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Table 3.1 Beneficial fractions for the exemplary items

beneficial fraction for material box

item weight metal ceramics plastics

A 100 g 40% 0% 45%
B 50 g 100% 0% 0%

steel and metal mix, instead of just metal). Having more than one box the
material is beneficial for, the sum of all beneficial fractions per item might
exceed the 100%.

The disposal bins d are another output that is based on weight units.
Generally, for disposal no limitations exist. But in the model not only one
kind of disposal is considered. A separate treatment of, for instance, regular
and hazardous disposal is accounted for. Rios/Stuart as well as Fer-
guson/Browne consider contaminating or hazardous material, too.9 It is
assumed that including one piece of hazardous waste (e.g., a battery) in
any other box or disposal bin leads to a contaminated box or disposal bin.
Thus, hazardous items can only be distributed (if demanded) or put into
the hazardous disposal.

Because of considering the core condition each individual item of a
core is denoted by an index. An approach with a quantity matrix as
in Kongar/Gupta, Langella, Lambert/Gupta, and Vadde/Zeid/
Kamarthi cannot be used, because two general identical items in differ-
ent positions in the core might show different conditions caused by wearing
etc.10 In addition, for the incomplete disassembly (see Chap. 4) the position
of an item in relation to other items is important such that two identical
items cannot be seen as just an item that appears twice per core. Therefore,
each item must be considered individually, which leads to a more compre-
hensive model.

9 Cf. Rios/Stuart (2004): Scheduling selective disassembly for plastics recovery,
pp. 188–189, and Ferguson/Browne (2001): Issues in EOL recovery , p. 540.
10 For quantity matrix approaches cf. Kongar/Gupta (2006b): Disassembly to order ,
Langella (2007b): Heuristics for demand-driven disassembly planning, pp. 560 et seq.,
Lambert/Gupta (2002): Demand-driven disassembly optimization, p. 131, and Vadde/
Zeid/Kamarthi (2011): Pricing decisions for product recovery , pp. 188 et seq.
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Many papers focus on cost minimisation.11 Others focus on profit max-
imisation.12 And again others include multiple criteria.13 In this work the
focus is on the profit maximisation, because it includes more than just the
cost. On the other hand, it includes all that is necessary in multiple criteria
decision making with the exception of the trade-off between the single crite-
ria. For example, a profit maximisation model includes the number of cores
acquired to calculate the corresponding cost. If the workload is capacitated,
an equation exists in the model to calculate the required workload. Taking
these two exemplary included aspects an enhancement to a multiple criteria
approach is straightforward.

The presented approach is explicitly multi-core. This requires in general a
consideration of commonality and multiplicity. The latter occurs in single-
core approaches, too. Commonality and multiplicity are usually issues in
relation to items and modules. But for material it exists as well, because
several items of a core or across cores can contain the same material. Hence
the presented approach includes commonality and multiplicity for all types
of output.

3.1.2 Model formulation

In the sequel the model is developed. The objective function is the profit
P , which is calculated by subtracting the cost C from the revenues R. The
profit is to be maximised.

Maximise P = R− C (3.1)

The revenues are the sum of all received payments for demanded items for
reuse QI

e and demanded items for material recycling QR
r . The QI

e are in
units so that the prices rIe are in e/unit. Analogically, the prices rRr in e/kg
for material recycling are based on the QR

r , which are measured in weight

11 Cf., e.g., Langella (2007b): Heuristics for demand-driven disassembly planning,
Gharbi/Pellerin/Sadr (2008): Production rate control for stochastic remanufacturing
systems, and Lambert/Gupta (2002): Demand-driven disassembly optimization.
12 Cf., e.g., Johnson/Wang (1998): Economical evaluation of disassembly operations,
Lambert/Gupta (2002): Demand-driven disassembly optimization, and Veerakamol-
mal/Gupta (1998): Optimal analysis of lot-size balancing for multiproducts selective
disassembly.
13 Cf., e.g., Kongar/Gupta (2006b): Disassembly to order , Kongar/Gupta (2002b):
A multi-criteria decision making approach, and Kongar/Gupta (2002a): Disassembly-
to-order system using linear physical programming .



3.1 Basic model 41

units, i.e., kg. The index r denotes the boxes the items for material recycling
are collected in and e denotes the demanded items. Note that not all items
of a core have to be demanded.

R =
∑
e

rIeQ
I
e +

∑
r

rRr Q
R
r (3.2)

In the case of complete disassembly the disassembly cost is identical for
each unit of core c. Thus, the disassembly cost for the complete core cJc and
the acquisition cost cAc occur for each core.14 The quantity of cores QC

c is
measured in units and the quantity of items disposed QD

d of is measured in
kg. The corresponding disposal cost are denoted by cDd .

C =
∑
c

(
cAc + cJc

)
QC

c +
∑
d

cDd Q
D
d (3.3)

The constraints of the model can be structured in the four groups

• item flow,
• core condition,
• purity, and
• limits,

which is illustrated in the sequel.

Item flow constraints

A multi-core approach has to deal with cores of different numbers of con-
taining items. This information is stored in Īc and so the indexing of the
items in each core starts with c = 1 and ends with Īc, i.e., i ∈ {1, . . . , Īc}.
The items of a core have different utilisation (see Fig. 3.2). One is for reuse.
Thereby, XI

ci denotes the number of item i of core c intended for item reuse.
The second utilisation is material recycling, which is denoted by XR

cir. For
these items and the ones for disposal XD

cid a third index is introduced that
represents the assignment to the recycling box r or disposal bin d.15

14 For an approach with a differentiated disassembly cost consideration with regard to
destructive and non-destructive disassembly the reader is referred to appendix B.1.
15 For a model with explicit modelling of non-destructive and destructive disassembly the
reader is referred to appendix B.1. The differences are mainly in the item flow constraints
and the objective function.
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QC
c = XI

ci +
∑
r

XR
cir +

∑
d

XD
cid ∀ c, i ∈ {1, . . . , Īc} (3.4)

The transformation of the items into weight units is achieved by the mul-
tiplication of the corresponding weights wci. In each box or bin only the
accumulated weight is of interest so that the sum over all cores and items
is applied.

QR
r =

∑
c

Īc∑
i=1

wciX
R
cir ∀ r (3.5)

QD
d =

∑
c

Īc∑
i=1

wciX
D
cid ∀ d (3.6)

One last flow of items remains. It is the connection between the disassembled
items for reuse XI

ci and the distributed quantity QI
e. Let us assume there

exists a demand for an item that appears thrice in core c = 1 and once in
core c = 2. The corresponding indices shall be i = 1, i = 5, and i = 17 for
core 1 and i = 2 for the item in core 2. All these four items accommodate
the demand. The demand index for this item is e = 1 and in a set Pe all
core item combinations (c, i) that accommodate the demand are stored, e.g.,
P1 = {(1, 1), (1, 5), (1, 17), (2, 2)}. The resulting quantity is the sum of all
these items.

QI
e =

∑
(c,i)∈Pe

XI
ci ∀ e (3.7)

Obviously, all items that cannot be used to accommodate the demand must
not be considered for reuse. Hence, the numbers of items to reuse of all core
item combinations not in any demand set Pe are zero.

XI
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (3.8)

Condition constraints

As explained above the condition of cores restricts the usability of the items
for reuse and recycling. At least all non-genuine items with the wrong mate-
rial have to be disposed of, regardless which disposal bin they are assigned
to (see Fig. 3.3). The probabilities of an item being non-genuine is denoted
by ζci and consisting of the wrong material is denoted by ιci. Thus, the
restriction for items assigned to disposal can be expressed as follows.
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d

XD
cid ≥ ζciιciQ

C
c ∀ c, i ∈ {1, . . . , Īc} (3.9)

On the other hand, only items that are genuine, functioning, and do not get
damaged during the disassembly can be reused. Thereby, the probabilities
are denoted by (1−ζci), (1−ηci), and (1−θci). This restriction only applies
to items with a demand because otherwise the numbers are zero anyway
(see Eq. (3.8)).

XI
ci ≤ (1− ζci)(1− ηci)(1− θci)Q

C
c ∀ (c, i) ∈

⋃
e

Pe (3.10)

Expressing the same restriction from a different point of view leads to the
following equation. All items that are not genuine, functioning, and undam-
aged must either be recycled or disposed of.∑

r

XR
cir +

∑
d

XD
cid ≥ (1− (1− ζci)(1− ηci)(1− θci))Q

C
c ∀ (c, i) ∈

⋃
e

Pe

(3.11)

Purity constraints

The required purity level of a recycling box is given by the external recycling
company and denoted with ωr. The beneficial fraction of an item for a
specific box is given with the parameter πcir. And the cumulated beneficial
weight of all items in a box must exceed the required level.

ωrQ
R
r ≤

∑
c

Īc∑
i=1

πcirwciX
R
cir ∀ r (3.12)

The aspect of hazardous items requires a little bit more modelling. For a
first understanding, it is assumed that only one regular and one hazardous
disposal bin exist in the company. Without loss of generality the regular
disposal bin is the first one, i.e., d = 1. Thus, the second disposal bin is
reserved for hazardous disposal. Furthermore, putting any hazardous item
in a recycling box and disposal bin leads to a complete contamination of
the box and bin, respectively. Thus, allocating a hazardous item to a box or
regular waste bin is prohibited. The result is that hazardous items can only
be distributed (if a demand exists) or disposed of in the hazardous disposal
bin. Hazardous items are denoted by core item combinations (c, i) in the set
H.
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XR
cir = 0 ∀ (c, i) ∈ H, r (3.13)

XD
cid = 0 ∀ (c, i) ∈ H, d ∈ {1} (3.14)

Consequently, if no hazardous items exist, the Eqs. (3.13) and (3.14) can be
neglected. Or if more regular disposal bins exist, the set {1} in Eq. (3.14)
just needs to be extended by the corresponding indices.

Limits constraints

As fourth group of constraints the limits and domain of the variables are
listed. Generally, all interfaces to the outside of the model scope can be
limited by lower and/or upper values. These variables are QC

c , QI
e, QR

r ,
and QD

d . The most important (upper) limits are the demand for items DI
e

and material DR
r . Core availability QC

c and a disposal quantity limitation
QD

d could be relevant, too. If contracts with business partners or legislative
guidelines exist, these can be included with the lower limits QC

c , Q
I
e, Q

R
r ,

and QD
d , for cores, items, material, and disposal, respectively. If no such

commitments exist, these parameters have a value of zero.

QC
c ≤ QC

c ≤ QC
c ∀ c (3.15)

QI
e ≤ QI

e ≤ DI
e ∀ e (3.16)

QR
r ≤ QR

r ≤ DR
r ∀ r (3.17)

QD
d ≤ QD

d ≤ QD
d ∀ d (3.18)

A further limitation of the disassembly process is the available labour
time. The time needed to disassembly one core is given by tJc in hours per
unit. The available labour time is denoted by L̄ in hours.∑

c

tJcQ
C
c ≤ L̄ (3.19)

The domain of the relevant variables is given by

XI
ci, X

R
cir, X

D
cid ∈ Z

∗ ∀ c, i ∈ {1, . . . , Īc}, r, d . (3.20)

With these variables the remaining variables (QC
c , Q

I
e, Q

R
r , Q

D
d , P , R, C)

automatically are in the correct domain. Because of the Eqs. (3.2)–(3.7),
where variables are set equal to other terms. The corresponding variables
can be substituted with a term and thus the model can be reduced by these
variables. This model formulation can be found in appendix B.2, but for a
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Table 3.2 Number of decision variables and constraints

integer variables
∣∣⋃

e Pe

∣∣+ (∑
c Īc − |H|) (r + d) + |H|

constraints 2
∑

c Īc + c+
∣∣⋃

e Pe

∣∣+ 3r + 2e+ 2d+ 1

better understanding the variables are kept in the model formulation in the
sequel.

To illustrate the model size the number of decision variables and con-
straints are listed in Table 3.2. The basis of the determination of the num-
bers is the compact model, i.e., the model formulation in appendix B.2. To
avoid confusion with existing variables the number of indices is denoted by
the index itself. This means, that the c in the table must be read as

∑
c 1.

Hence, when writing c · r the interpretation is to calculate the number of
cores times the number of recycling boxes. The XI

ci only have values differ-
ent than zero for elements of the set

⋃
e Pe, which leads to the entry |⋃e Pe|

in the table. The variables XR
cir and XD

cid occur
∑

c Īc times r and d, respec-
tively. But, Eqs. (3.13) and (3.14) set the value of core item combinations
of hazardous items equal to zero. Thus, these variables are excluded from
the consideration. The resulting number of decision variables for a model
with one hazardous disposal bin is depicted in the table. Note that for every
index the number of variables and constraints increases linearly.

The number of constraints is determined by taking a look at each con-
straint and especially with a focus on the right side of the universal quanti-
fier (∀). Taking for example Eq. (3.9) or (B.25): this formulation represents∑

c Īc constraints and not just a single one. For the determination only one
set of constraints described by Eqs. (3.10) and (3.11) (see Eq. (B.26)) is
included, because only one set is necessary. Adding all the constraints leads
to the term in Table 3.2. As can be seen, the number of variables and con-
straints changes linearly with a variation of a single parameter, e.g., the
number of cores c.

To illustrate the model size calculation a small example shall serve. Let
us assume that two cores with four and six items, three recycling boxes, two
disposal bins, one hazardous disposal bin, two hazardous items, two demand
positions, and in total five items to accommodate the demand for items are
considered. The number of decision variables results in 5+ ((4+6)− 2)(3+
2)+ 2 = 47 and the number of constraints equals 2 · (4+ 6)+ 2+ 5+ 3 · 3+
2 · 2 + 2 · 2 + 1 = 45.

Summarising the above mentioned, the presented model maximises the
profit of revenues from distributed items for reuse and items for material
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H

C D
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A,B: front wheels C,D: rear wheels E: fork F: lift unit G: chassis H: engine

Sources: www.jungheinrich.de/special/trucks/pdfs/DFG_TFG_316s-320s_de.pdf

www.locquet.com/productfiche_hatz/tb_1d41_50.pdf

Fig. 3.4 Bill of materials of forklift truck

recycling and costs. The costs include core acquisition, disassembly, and dis-
posal cost. The transport unit cost for cores, items (for reuse, recycling, and
disposal) is included in the corresponding price or per unit cost. Further-
more, several material types with specific purity requirements and disposal
types are modelled. The demand of items for reuse or material recycling
forms the upper limit and does not necessarily has to be met. But, if a cer-
tain demand must be distributed, it is easily achieved by setting the lower
distribution limit to the same values as the demand. Moreover, the condi-
tion of the core and thus the condition of the items within the cores form
further restrictions on the use of an item. The three considered conditions
correspond to the case that an item is non-genuine, defective, and of wrong
material. In addition, the possibility of damage during the disassembly pro-
cess is included, too.

3.1.3 Numerical example

3.1.3.1 Data

To illustrate the use of the model a first numerical example is presented
in the sequel. It is a simplified case of three types of forklift trucks. One
is powered by diesel, a second by gas, and the third by electricity. The
general construction of these three is identical and is depicted in Fig. 3.4.
The (abstract) eight items A through H may be identical across the three
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core c = 1

A B C D E F G H

core c = 2

A B C D E F G H

core c = 3

A B C D E F G H

Fig. 3.5 Structure of cores

Table 3.3 Item commonalities and multiplicities

item i

core c type A B C D E F G H

1 diesel (1, A) (1, A) (1, C) (1, C) (1, E) (1, F)
2 gas (1, A) (1, A) (2, C) (2, C) (1, E) (1, F) (2, G)
3 electricitiy (1, A) (1, A) (1, C) (1, C) (1, F) (2, G)

types or not. This information is displayed in Fig. 3.5 and Table 3.3. All
cores (1–3) and items (A–H) are listed. Item A (a front wheel) is identical
in all three cores and exists twice in each core, which can be identified
by the tuple (1,A) in all three rows of column i = A and i = B. In the
figure this information is depicted with the same shape around the label
of the item, e.g., a circle. In addition, the chassis of the gas and electricity
powered trucks are identical, too. This can be seen by the tuple (2,G) and
the rounded rectangle. On the contrary, the engines of all three cores are
unique and therefore not listed in the table. An example of pure multiplicity
is the back wheels of the gas powered truck (2,C). Two of them exist in
just one core. Each tuple in the table is a reference to a specific item in a
core—a representative item.

The order the data is given follows more or less the flow in the disassembly
process, i.e., from incoming cores to outgoing items and material. All three
cores consist of eight items each, thus Īc = 8 ∀ c (see Table 3.4). For each core
certain quantities of cores to acquire are already fix and given by QC

c . An
upper limit does not exist in this example. The cost per core for acquisition
cAc , disassembly cJc , and the weights wci are given in the table. Moreover,
the time for disassembling tJc a unit is assumed to be ten, nine, and eight
hours for the cores. The labour time for the planning period is limited to
L̄ = 2,200 h.

When the core is completely disassembled into its items, hazardous items
need to be handled in a special way. The diesel engine shall be the only haz-
ardous item in the numerical example. Thus, the set H contains only one
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Table 3.4 Item weight, core acquisition cost and limit, disassembly cost, number of
items per core

wci

item i

c A B C D E F G H QC
c cAc cJc Īc tJc

1 11 11 8 8 40 180 950 200 30 2,300 300 8 10
2 11 11 7 7 40 180 900 150 50 2,600 280 8 9
3 11 11 8 8 36 180 900 100 25 2,900 260 8 8

Table 3.5 Probability of item being non-genuine, defective, of wrong material, and get-
ting damaged

c = 1 c = 2 c = 3
item i item i item i

A B C D E F G H A B C D E F G H A B C D E F G H

ζci 0.1 0.1 0.15 0.15 0 0 0 0 0.1 0.1 0.1 0.1 0 0 0 0 0.1 0.1 0.15 0.15 0 0 0 0
ηci 0.5 0.5 0.5 0.5 0.01 0.05 0.01 0.05 0.5 0.5 0.5 0.5 0.01 0.05 0.01 0.05 0.5 0.5 0.5 0.5 0.01 0.05 0.01 0.01
ιci 0 0 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0
θci 0 0 0 0 0 0.01 0 0.02 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0.01 0 0

Table 3.6 Demand limits, prices, demand position

e QI
e DI

e rIe Pe

1 20 250 30 {(1,A), (1,B), (2,A), (2,B), (3,A), (3,B)}
2 0 300 300 {(1,E), (2,E)}
3 10 300 2,400 {(2,G), (3,G)}

core item combination and that is (1, H): H = {(1,H)}. Further important
core item related information is the condition of the acquired cores and its
constituent items. The probabilities of items in cores being non-genuine, de-
fective, of the wrong material, and become damaged during the disassembly
process are ζci, ηci, ιci, and θci, respectively. These are given in Table 3.5.
For example, 15% of all cores c = 1 contain a non-genuine item C and D
and in every second core item A, B, C, and D are defective. Note that the
probabilities are independent of each other.

Once the cores are disassembled the resulting items are either sold for
reuse or for material recycling or are disposed of. Out of the possible 11
items (three cores times eight item minus the common and multiple items,
see Table 3.3) three are demanded for reuse. These are item A of core 1
(1, A), item E of core 1 (1, E), and item G of core 2 (2, G) including
the identical items in other cores. For each demand position e the core item
combinations that meet the demand are stored in the set Pe (see Table 3.6).
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Table 3.7 Quantity limits and cost information for material selling and disposal

material recycling disposal

r QR
r DR

r rRr d QD
d cDd

1 2,000 1,000,000 1.35 1 0 0.2
2 0 1,000,000 0.95 2 0 0.4
3 0 1,000,000 0.75
4 0 1,000,000 0.45

Table 3.8 Minimum purity requirement and beneficial fractions

beneficial fraction πcir

c = 1 c = 2 c = 3
i i i

r ωr A B C D E F G H A B C D E F G H A B C D E F G H

1steel 0.90 0.5 0.5 0.5 0.5 1 0.99 0 0.1 0.5 0.5 0.5 0.5 1 0.99 0 0.15 0.5 0.5 0.5 0.5 1 0.99 0 0.1
2metal 0.85 0.5 0.5 0.5 0.5 1 0.99 0.7 0.97 0.5 0.5 0.5 0.5 1 0.99 0.7 1 0.5 0.5 0.5 0.5 1 0.99 0.7 1
3 rubber 0.50 0.5 0.5 0.5 0.5 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0
4plastics0.95 0 0 0 0 0 0.01 0.3 0 0 0 0 0 0 0.01 0.3 0 0 0 0 0 0 0.01 0.3 0

Furthermore, the lower limits QI
e to distribute, the demand, as well as the

prices rIe are listed in the same table.
The quantities, prices and unit cost for the material distribution and

disposal are listed in Table 3.7. The disposal bin d = 2 holds the hazardous
items. Therefore, the unit cost is higher than the one of the regular disposal.
An upper limit for disposal is not assumed.

Lastly, the purity requirements for the distribution need to be considered.
In total four categories of boxes for collecting material exist: steel, metal,
rubber, and plastics. The minimum purity ωr of a steel box is 90% and of a
metal mix box 85% (see Table 3.8). Each item contributes more or less to
this purity and this is expressed by the beneficial fraction πcir for each item
i of core c in regard to box r. For example, item A consists of 50% steel and
50% rubber. Thus, the beneficial fraction of the weight of this item is 50%
for the steel and 50% for the rubber box. But also for the metal mix box
the steel percentage of the item benefits to it. So, 50% is also beneficial to
box r = 2. On the contrary, item E consists of metal (e.g., aluminium) and
plastics. The beneficial fraction for the steel box is zero, because aluminium
is no steel. For the metal mix box the complete fraction of aluminium is
beneficial. (Even though the minimum purity for plastics is not achievable,
the box r = 4 is listed for illustration.)
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Table 3.9 Optimal solution of the basic model

variables representing the interfaces

QC
1 30 QI

1 216 QR
1 52,610 QR

4 0

QC
2 188 QI

2 215 QR
2 60,500 QD

1 32

QC
3 25 QI

3 210 QR
3 0 QD

2 6,000

integer variables

XI
ci XR

cir XD
cid

r = 1 r = 2 r = 3 r = 4 d = 1 d = 2
c c c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 84 11 17 104 14 . . . . . . . . . . . . . . .
B 13 84 11 17 104 14 . . . . . . . . . . . . . . .
C . . . 29 188 24 . . . . . . . . . 1 . 1 . . .
D . . . 29 188 24 . . . . . . . . . 1 . 1 . . .
E 29 186 . 1 2 25 . . . . . . . . . . . . . . .
F . . . 30 188 25 . . . . . . . . . . . . . . .
G . 186 24 1 . . 29 2 1 . . . . . . . . . . . .
H . . . . 3 . . 185 25 . . . . . . . . . 30 . .

A dot denotes a value of zero.

3.1.3.2 Results

According to the data (three cores of eight items each, three demand po-
sitions, in total |⋃e Pe| = 10 demanded items, four recycling boxes, two
disposal bins and one hazardous item) the resulting model size is 10+(24−
1)(4+2)+1 = 149 integer variables and 2·24+3+10+3·4+2·3+2·2+1 = 84
constraints (see Table 3.2). Solving this model—in a fraction of a second
with GUROBI 5.0—with the given (fictive) data, results in a maximal profit
of P = 2,632.1e.16 The revenues and cost are 703,478.5e and 700,846.4e,
respectively. The values of remaining variables are displayed in Table 3.9.

This profit is achieved by disassembling 30, 188, and 25 units of core 1, 2,
and 3, respectively (see Table 3.9). In the lower section of Table 3.9 (integer
variables) it is given how the cores should be treated. For example, 30 units
of core c = 1 are completely disassembled. Thereby, 13 units of item i = A,
13 units of item i = B, and 29 units of item i = E are appointed for item
reuse. According to Table 3.5, 10% and 50% of the items i = A of core c = 1
are expected to be non-genuine and defective, respectively. This means that
only 45% (90% times 50%) of the items are expected to be applicable for

16 The computer used for the calculation is one with two AMD Opteron 6282SE 2.6GHz
and eight threads used for the GUROBI 5.0 solver.
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item reuse, i.e., �13.5	 = 13 of the 30 units.17 This limitation is considered.
The remaining 17 units of item i = A must be recycled or disposed of. As
can be seen in Table 3.9, 17 units are intended for material recycling for box
r = 1. All together the 30 units of item A of core 1 are reused or recycled.

Another limiting aspect is the purity requirement.18 29 units of item
G of core 1 are allocated into recycling box r = 2, i.e., the metal box.
One item weighs 950 kg. Thus, 29 units make 27,550 kg. But only 70% are
beneficial for metal. (The remaining 30% are plastics.) This alone would not
be sufficient for the purity requirement of 85% (see Table 3.8). Therefore,
further (more pure) metal is needed, e.g., two, one, 185, and 25 units of items
i = G of core c = 2, i = G of core c = 3, i = H of core c = 2, and i = H of
core c = 3, respectively, (see Table 3.9). Taking the weights of the items and
the units 950·29+900·2+900·1+150·185+100·25 = 60,500 kg material are
in recycling box r = 2 (see QR

2 in Table 3.9). The beneficial weight results
in (950 · 29 + 900 · 2 + 900 · 1)0.7 + (150 · 185 + 100 · 25)1 = 51,425 kg (see
Table 3.8), which is 85% of the material weight of 60,500 kg. Hence, the
purity limitation ω2 = 0.8 is satisfied. Item i = H of core c = 1 is the only
hazardous item. Thus, it can only be reused or disposed of as hazardous
waste. As can be seen, it is optimal to dispose of all 30 items, because no
demand exists for reusing these hazardous items.

Furthermore, the lower core acquisition limits of 30, 50, and 25 units
are considered and two of them are limiting, i.e., of core 1 and 3 (see Ta-
ble 3.9). On the contrary, the lower limits for demanded items as well as the
one for material recycling are not binding (apart from the non-negativity
constraint). The same applies to the demand because the QI

e are less than
the DI

e. For the material recycling the demand is big enough so that a lot
more material could be distributed. But this would lead to less profit, which
would be suboptimal. For disassembling the units according to the solution
10 · 30+9 · 188+8 · 25 = 2,192 h are needed (see Eq. (3.19)). This is slightly
less than the available L̄ = 2,200 h, which might be caused by the integrality
constraints.

With the presented approach the disassembling companies are now able
to determine the profit maximal quantities of cores to acquire, items to
distribute, material to recycle, and waste to dispose of, when prices and unit
cost are quantity independent. For larger quantities a dependency between
the quantities and the prices and/or unit cost might occur, which is focused
on in the following section.

17 The rounding down is caused by the integrality constraint for variables XR
cir.

18 It is limiting because a marginal decrease of ω2 results in a different solution with a
higher profit.
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3.2 Linear price-quantity dependencies

3.2.1 Applicable quantity and price dependencies

In approaches of optimising the cost or the profit in disassembly planning
usually no quantity dependent unit cost and prices are considered.19 Of
course, such an approach without quantity dependency allows an analysis of
properties in disassembly planning already. But, when obvious dependencies
exist, a thorough analysis is to favour. And disassembly companies do have
interfaces to other members on markets, e.g., suppliers and customers. Thus,
the modelled acquiring of cores, distributing of items, recycling of material,
and the disposal are aspects with possible quantity dependencies.

A price-quantity dependency can occur in arbitrary forms. This could be
discrete, discontinuous, and continuous combined with arbitrary, progres-
sive, linear, or degressive and increasing, decreasing, or constant progress.
However, in the literature one can find continuous linear, isoelastic, expo-
nential, algebraic, and several other non-linear price-consumption or price-
demand functions, i.e., the modelled dependency between price and quan-
tity.20 Determining the correct dependency is not an easy task, which usu-
ally results in an approximation using somewhat adequate and easy to han-
dle functions. One of these is surely a linear function, which shall be focused

19 Cf. Kim/Lee/Xirouchakis (2007): Disassembly scheduling , pp. 4468 et seq., Lan-
gella (2007b): Heuristics for demand-driven disassembly planning , pp. 559 et seqq.,
Lee/Xirouchakis (2004): Two-stage heuristic for disassembly scheduling , pp. 289 et
seq., Kongar/Gupta (2006b): Disassembly to order , pp. 552 et seqq., as well as Inder-
furth (2004): Optimal policies in hybrid manufacturing systems, p. 329.
20 For linear functions cf. Choi (1991): Price competition in a channel structure, p. 275,
Choi (1996): Price competition, p. 122, Ingene/Parry (2007): Bilateral monopoly,
p. 589, Berndt/Cansier (2007): Produktion und Absatz , p. 177, Xie/Neyret (2009):
Co-op advertising and pricing models, p. 1376, Xie/Wei (2009): Coordinating adver-
tising and pricing , p. 787, Zhang/Liu/Wang (2012): Pricing decisions, p. 524, and
Wu/Chen/Hsieh (2012): Competitive pricing decisions, p. 267; for isoelastic functions
cf. Yue et al. (2006): Coordination of cooperative advertising , p. 68, Szmerekovsky/
Zhang (2009): Pricing and two-tier advertising , p. 906, and Esmaeili/Zeephongsekul
(2010): Seller-buyer models, p. 147; for algebraic functions cf. Mesak/Mayyasi (1995):
Simple model of international joint venture distributorships, p. 527 and SeyedEsfahani/
Biazaran/Gharakhani (2011): Coordinate pricing, p. 265; for exponential functions cf.
Mesak/Mayyasi (1995): Simple model of international joint venture distributorships,
p. 527; for arbitrary non-linear cf. Amir/Stepanova (2006): Second-mover advantage
and price leadership, p. 8, and Ding/Ross/Rao (2010): Price as an indicator , pp. 69 et
seqq.
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on in the sequel.21 Thereby, three cases are distinguished, i.e., an increasing,
a constant, and a decreasing progress of a linear function. An extension of
the linear function can be found in Sect. 3.3 using piecewise linear functions.

In general, two points of view can be differentiated. One is the price being
the exogenous variable and the quantity the endogenous one and the second
possibility is the quantity being the exogenous and the price the endogenous
variable. In the case of a linear dependency both points of view can easily
be converted into another, because no ambiguities occur when inverting the
corresponding functions. (A counter example is, for instance, a quadratic
function, where two different exogenous values lead to the same endogenous
value, e.g., (x−2)2 = y.) Thus, for modelling purposes it is irrelevant which
of the two variables is the exogenous and which the endogenous as long as
the functional dependency is clear.

Focusing back on the disassembling company the first price-quantity de-
pendency is the one for cores. W.l.o.g. the quantity is assumed to be the
exogenous variable, i.e., the one that is set. The price (or unit cost) is the
endogenous variable, i.e., the price levels according to the quantity compa-
rable to quantity discounts. What effects, in terms of price and unit cost,
depend on the quantity of incoming cores? The first aspect is the limit of
cores on the market. Since the availability of cores depends on the return
of used products by consumers an infinite availability of cores does not ex-
ist. Thus, when increasing the quantity a competitive situation occurs that
leads to increasing prices of cores. This behaviour can also be motivated
by the fact that with higher prices, because of the competition, consumers
are willing to give away their used products earlier for higher return prices,
which in turn leads to higher quantities of cores on the market. (This be-
haviour could be monitored with the so-called “Umweltprmie” in Germany
for used cars.)22

A second aspect is the transport distance. Again, caused by the limited
availability of cores near by the disassembling company it is assumed that
the transport distances increase with increasing quantities of cores acquired.
Of course, there might exist levels where, for instance, cheaper transport fa-
cilities can be used or other economies of scale might apply, but the general
tendency is an increasing unit cost. A third aspect could be a quality re-
duction of the cores, because the company cannot choose the best picks
anymore. Worse quality cores might have a lower price but might lead to
higher cleaning, testing, and disassembly cost. These effects are difficult to

21 The most commonly used functions are linear and isoelastic functions, cf. Lau/Lau
(2003): Effects of a demand-curve’s shape, pp. 530 et seq.
22 Cf. BAFA (2009): Richtlinie zur Förderung des PKW-Absatzes.
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quantify and therefore it is assumed that the quality reduction is negligible.
(A detailed consideration beyond the scope of this work would surely be
imaginable.) Summarising the above mentioned, on the market of cores a
positive correlation between quantity and price and unit cost is assumed for
the disassembly company.

The distribution of items and material recycling are discussed jointly as
they follow the same rules with only differing in the distribution target.
With increasing quantities of items and material being distributed the price
of a unit decreases. Of course, for low quantities this might not apply, be-
cause a certain critical mass needs to be reached to make the usage of used
items and material economically beneficial, but firstly we assume that the
disassembling company already is running—and thus the critical mass is
exceeded—and secondly legal might apply that assure a minimal quantity
of distribution. An example is the end-of-life vehicles regulation in Germany
where on average at least 85% of the weight of the cars per year must be
reused or recycled (incl. energetic recycling) and at least 80% have to be
reused or material recycled. In 2015 the targets raise to 95 and 85%, respec-
tively.23 All in all, we assume that if quantities increase the price decreases.

The last customer relationship is the one to the disposal companies. Let
us assume that no demand exists for waste, because otherwise it could
be sold as material. Though, one tangible aspect is the limited space for
landfilling. But not only this; in general, the resource earth is limited and
thus every additional unit of waste should lead to increasing disposal cost.
Reasons could be increasing distances, legal regulations, etc. Even though
the ultimate goal is avoiding any waste, we know that it is practically not
realisable, yet.

Even though, cross dependencies among the cores or items etc. exist
(e.g., transporting different cores from one supplier with the same truck
or picking up cores from and delivering items to the same company) they
shall be neglected in the sequel. Furthermore, all suppliers of one core are
aggregated to one supplier, i.e., the market. The same applies to the distri-
bution, recycling, and disposal. In addition, the company in focus does not
consider other disassembling companies directly and their effects on each
other. Thus, the disassembling company is faced with independent suppli-
ers and customers and has no competitor, which makes this consideration
comparable to a simple game theoretic approach. Nonetheless, it is a first
inclusion of quantity dependent pricing in disassembly planning to the best
of our knowledge. An extended game theoretic examination of the business

23 Cf. 5 (1) Verordnung ber die berlassung, Rcknahme und umweltvertrgliche Entsorgung
von Altfahrzeugen (AltfahrzeugV) [=end-of-life vehicles regulation].
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relations and the behaviour of the player might be of interest, but would go
beyond the scope of this work.

3.2.2 Proof of concavity for the objective function

The general linear function is y = mx + n. For monotone increasing linear
functions the slope m is positive and for decreasing functions negative. If
the slope equals zero, the function is constant, i.e., neither increasing nor
decreasing. To introduce the slope and the fixed term into the optimisation
model additional parameters are necessary. These are based on the original
ones (e.g., cAc ) and get accents. The fixed term is marked with a bar (e.g.,
c̄Ac ) and the slope with a hat (e.g., ĉAc ). Thus, the according price and cost
parameters in the revenue and cost functions in Eqs. (3.2) and (3.3) are
substituted by a linear expression depending on the quantity—just like:
c̄Ac + ĉAc QC

c replaces cAc . This substitution leads to

R =
∑
e

(
r̄Ie + r̂Ie Q

I
e

)
QI

e +
∑
r

(
r̄Rr + r̂Rr QR

r

)
QR

r (3.21)

and

C =
∑
c

(
c̄Ac + ĉAc QC

c + cJc
)
QC

c +
∑
d

(
c̄Dd + ĉDd QD

d

)
QD

d . (3.22)

According to the argumentation above, the prices of items and material
decrease with increasing quantities, i.e., the slope of the price function is
negative. Hence, r̂Ie and r̂Rr are less than or equal zero. On the contrary, unit
costs for acquisition and disposal increase with increasing quantities, which
means that the slope of the unit cost function is positive. Therefore, ĉAc and
ĉDd are greater than or equal zero.

The resulting objective function P = R − C is a quadratic polynomial,
because when expanding the function not only decision variables are mul-
tiplied with parameters (e.g., r̄Ie Q

I
e), but also two decision variables are

multiplied (e.g., r̂Ie Q
I
e Q

I
e). In this context, the parameters are not relevant.

Just the decision variables determine the model (and polynomial) class.
Hence, the model is no longer a mixed integer linear problem (MILP). Now
it belongs to the class of mixed integer quadratic problems with linear con-
straints (MIQLP). Usually the “L” in the abbreviation is neglected, but
here it shall emphasise that the problem only contains linear constraints.
Obviously, this problem cannot be solved with a linear solver anymore.
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Solving an arbitrary problem of this class requires solution approaches of
general non-linear problems. But with particular properties a subset of this
problem class can be solved fairly easily. The required property is that the
objective function is concave (for maximisation problems) and continuous
and that the first order derivative is continuous (i.e., degree 1 continuity),
too. The property of being concave assures that the optimisation direction
(towards the optimum) is clear. The other two properties (summarised as:
G1 continuous) are fulfilled by quadratic functions.

In order to apply a solution algorithm that requires concave quadratic
function, concavity of the objective function needs to be proved. One pos-
sibility is the transformation of the objective function into a matrix and
vector notation. The basic form is P (x) = cTx + xTDx. In this case the
matrix D must be negative semi-definite in order to be a concave function
P (x).24 The variables QI

e, Q
R
r , Q

C
c , Q

D
d , X

I
ci, X

R
cir, and XD

cid form the vector
x. Vector c and matrix D contain the corresponding parameters such that
the functions are identical.25

P (x) = cTx+ xTDx (3.23)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̄Ie
r̄Rr

−c̄Ac − cJc
−c̄Dd
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

QI
e

QR
r

QC
c

QD
d

XI
ci

XR
cir

XD
cid

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

QI
e

QR
r

QC
c

QD
d

XI
ci

XR
cir

XD
cid

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̂Ie 0 0 0 0 0 0
0 r̂Rr 0 0 0 0 0
0 0 −ĉAc 0 0 0 0
0 0 0 −ĉDd 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

QI
e

QR
r

QC
c

QD
d

XI
ci

XR
cir

XD
cid

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.24)

The r̂Ie and r̂Rr are less than or equal zero. On the contrary, the ĉAc and ĉDd are
greater than or equal zero. Thus, all elements of the main diagonal of matrix
D are negative or zero. All other elements of the matrix are zero, because the
quadratic terms only result of multiplications with the same variable (e.g.,(
QC

c

)2
) and not with another variable (e.g., QC

c QI
e). Therefore, matrix D is

negative semi-definite, which means that the objective function is concave.
Hence, the problem belongs to the class of relatively easy to solve quadratic
problems. In the sequel, a numerical example illustrates this.

24 Cf. Ellinger/Beuermann/Leisten (2003): Operations Research, pp. 205–209.
25 The arrays XI

ci, X
R
cir, and XD

cid must be vectorised to be put into the vector x and c
or the matrix D.
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Table 3.10 Data for linear price-quantity dependent function

c c̄Ac ĉAc e r̄Ie r̂Ie r r̄Rr r̂Rr d c̄Dd ĉDd

1 2,220 2.2 1 31 −0.004 1 1.43 −0.0000014 1 0.2 0.0000002
2 2,095 2.7 2 350 −0.22 2 1.00 −0.0000009 2 0.4 0.0000004
3 2,900 2.8 3 2,500 −0.49 3 0.75 −0.0000007

4 0.45 0

3.2.3 Numerical example

Basically all data is identical to the one given in the section before (see
Tables 3.3–3.8). Only the parameters cAc , c

D
d , r

I
e, and rRr are substituted by

their pendants c̄Ac and ĉAc etc. The fixed terms as well as the slopes are chosen
in a way that the profit more or less equals the one of the former model
when applying the solution of Table 3.9. The data is listed in Table 3.10.

Using the solution in Table 3.9 a profit of 2,614.41e results and this
almost equals the 2,631.1e of the example in the preceding section. Solving
the model results in an increased profit of P = 10,897.13e with revenues
R = 564,735.23e and cost C = 553,838.10e. The remaining values of the
variables are depicted in Table 3.11. The solution is significantly different
than the preceding one. 45 units less of core 2 are acquired. This leads to less
workload, less items for reuse (on average by 130/3), less material for steel
recycling (by 17,082 kg), a bit more material for metal recycling (by 590 kg),
and material for rubber recycling of QR

3 = 562 kg. In addition, the allocation
of the items represented by the XI

ci and XR
cir have changed accordingly. The

exemplary problem is solved to optimum in 14 s with GUROBI 5.0.26 The
number of variables and constraints is identical to that of the preceding
model.

This section represents a first step in including market dependencies.
In the following section the approach is expanded in order to allow a more
detailed modelling of the existing price-quantity dependencies. Nevertheless,
drawbacks still exists because the focus is still on approximations and not
on arbitrary dependency functions.

26 From the longer solving time of this example one cannot derive a general worse solving
time for quadratic problems compared to linear ones.
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Table 3.11 Optimal solution of the quadratic model

variables representing the interfaces

QC
1 30 QI

1 176 QR
1 35,528 QR

4 0
QC

2 143 QI
2 170 QR

2 60,990 QD
1 32

QC
3 25 QI

3 165 QR
3 562 QD

2 6,000

integer variables

XI
ci XR

cir XD
cid

r = 1 r = 2 r = 3 r = 4 d = 1 d = 2
c c c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 64 11 5 42 14 . . . 12 37 . . . . . . . . . .
B 13 64 11 17 79 14 . . . . . . . . . . . . . . .
C . . . 29 142 24 . . . . 1 . . . . 1 . 1 . . .
D . . . 29 143 22 . . . . . 2 . . . 1 . 1 . . .
E 29 141 . 1 . . . 2 25 . . . . . . . . . . . .
F . . . 30 136 . . 7 25 . . . . . . . . . . . .
G . 141 24 . 1 . 30 1 1 . . . . . . . . . . . .
H . . . . . . . 143 25 . . . . . . . . . 30 . .

A dot denotes a value of zero.

3.3 Piecewise linear price-quantity dependencies

3.3.1 Objective function and its properties

The actual price-quantity dependency may be a non-linear arbitrary func-
tion. But, the determination of the correct function might be too difficult or
impossible, e.g., because of missing information for every possible quantity
price combination. Thus, an approximation is advisable. One approach that
extends the pure linear dependency is the approximation by piecewise lin-
ear functions. The parameters for the particular sections (pieces) are fairly
easy to determine and by increasing the number of sections the approxi-
mation becomes better. This also assures a quadratic objective function for
which solver software exists. Nonetheless, in the end the resulting objec-
tive function of the optimisation problem must be concave. Only then, the
determination of the optimum ends definitively in the global optimum.

Exemplary piecewise linear functions are depicted in Fig. 3.6. The left
case represents an anonymous market, i.e., the basic price r̄ does not depend
on the quantity. Hence, the slope of the function is r̂1 = 0. The middle
case is an extension by a part with a negative slope r̂2 where the price
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Fig. 3.6 Piecewise linear price-quantity dependency and resulting revenue functions

decreases with an increasing quantity Q (see argumentation above). Here,
the quantity Q̌1 is a limit up to which the price is inelastic. If r̂1 is set to a
value smaller than zero the price already decreases with the very first unit. It
is assumed (as in the section above), that the price is identical for the whole
quantity. This means that only one price exists and thus no differentiation
of markets is made. The right case extends the middle case by another linear
section of the curve. This can be continued even further, but it increases the
number of variables Qs to model this function. Each variable Qs denotes
the quantity allocated in the section s. In terms of a good approximation
of the actual price-quantity function one might want to add many sections
but this has a trade-off in adding extra decision variables and constraints
as is illustrated in the following. The price-quantity dependency function
has to be continuous, because the objective function shall be continuous.
A jump discontinuity in the quantity dependency function leads to a jump
discontinuity in the objective function, because the quantity-dependency
function is just multiplied with the quantity.

The price r(Q) for a given quantity Q of the right case (see Fig. 3.6) can
be determined by the partially defined function
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r(Q) =

⎧⎪⎨⎪⎩
r̄ + r̂1 Q 0 ≤ Q ≤ Q̌1

r̄ + (r̂1 − r̂2) Q̌1 + r̂2 Q Q̌1 < Q ≤ Q̌2

r̄ + (r̂1 − r̂2) Q̌1 + (r̂2 − r̂3) Q̌2 + r̂3 Q Q̌2 < Q

(3.25)

or by using the section variables Qs

r = r̄ + r̂1 Q1 + r̂2 Q2 + r̂3 Q3 = r̄ +

3∑
s=1

r̂s Qs . (3.26)

Thereby, the distributed quantity Q is split into Q1, Q2, and Q3, i.e.,
Q = Q1 +Q2 +Q3 and the first two variables are limited by

0 ≤ Q1 ≤ Q̌1 − 0 (3.27)

0 ≤ Q2 ≤ Q̌2 − Q̌1, (3.28)

whereas variable Q3 must not be negative and has not necessarily an up-
per limit. With this the generating of the price function with more sec-
tions should be comprehensible. The revenues r(Q)Q that result from a
distributed quantity Q are

r(Q)Q =

(
r̄ +

∑
s

r̂s Qs

)
Q, (3.29)

where s denotes the index of the section. The result is a quadratic function,
because of the multiplication of two decision variables. For a maximisation
the objective function should be concave with respect to the feasible values
of the decision variables. This can be checked by the second order derivative
of the function.

For showing that the revenue function is concave we derive from the
general revenue function a function for an arbitrary section s̃ with Q =∑

s Qs between Q̌s̃−1 and Q̌s̃

rs̃(Q)Q

=

(̄
r +

s̃∑
s=1

r̂s Qs

)
Q =

(̄
r +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

)
+ r̂s̃

(
Q− Q̌s̃−1

))
Q

(3.30)

with Q̌0 being zero. The first order derivative of this function is
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∂

∂ Q

∣∣∣∣
Q̌s̃−1≤Q≤Q̌s̃

= r̄ +

s̃−1∑
s=1

r̂s(Q̌s − Q̌s−1) + r̂s̃(2Q− Q̌s̃−1) (3.31)

and the second order derivative is

∂2

∂ Q2

∣∣∣∣
Q̌s̃−1≤Q≤Q̌s̃

= 2 r̂s̃ ≤ 0. (3.32)

Thus, in each section the function is concave as long as r̂s is less or equal
than zero. In addition, the first order derivative of the objective function
not only has to decrease within the sections but also on the section borders.
Hence, the first order derivative of section s̃ must be greater or equal than
the one in section s̃+ 1 for Q → Q̌s̃, i.e., the quantity Q where the change
from one to the next section appears.

r̄ +
s̃−1∑
s=1

r̂s(Q̌s − Q̌s−1) + r̂s̃(2Q− Q̌s̃−1)

≥ r̄ +

s̃∑
s=1

r̂s(Q̌s − Q̌s−1) + r̂s̃+1(2Q− Q̌s̃)

(3.33)

r̂s̃(2Q− Q̌s̃−1) ≥ r̂s̃(Q̌s̃ − Q̌s̃−1) + r̂s̃+1(2Q− Q̌s̃) (3.34)

r̂s̃(2Q− Q̌s̃) ≥ r̂s̃+1(2Q− Q̌s̃) (3.35)

For Q → Q̌s̃ the inequality reduces to

r̂s̃ Q̌s̃ ≥ r̂s̃+1 Q̌s̃ (3.36)

and since Q̌s̃ > 0 we get
r̂s̃ ≥ r̂s̃+1 . (3.37)

This inequality shows that, if the slope of the price function of the succeeding
section is lower than the considered section, the first order derivative of
the revenue function of the succeeding section is also lower, which assures
concavity for the revenue function on the section changes. Furthermore, the
price-quantity dependency function is continuous and therefore the revenue
function, too. Consequently, the revenue function is concave, because it
has no saltus, is concave within the sections, and is concave at the section
changes.

The price development for every demanded item is assumed to be inde-
pendent (in terms of market, i.e., no cannibalisation) of the other items and,



62 3 Complete disassembly planning

therefore, the revenues are independent also. Thus, for every demanded item
an individual independent concave revenue function exists and adding those
for all distributed items results in an overall concave revenue function.27 The
same applies to the remaining three functions. Adding all four concave func-
tions and the linear disassembly cost function an overall concave quadratic
objective function results.

3.3.2 Model formulation

The general formulation of the model is identical to the one in Sect. 3.2.
Only the price and cost functions are modified and constraints for splitting
of the quantities into the sections are introduced. The revenues of items
are denoted by rIe(Q

I
e)Q

I
e, where rIe(Q

I
e) is a function of QI

e. The revenue
function is derived from Eq. (3.29), i.e.,

rIe(Q
I
e)Q

I
e =

(
r̄Ie +

∑
s

r̂Ies Q
I
es

)
QI

e . (3.38)

The variable r̄Ie denotes the price for distributing just one item, r̂Ies denotes
the slope of the price development in section s, and QI

es denotes the quantity
within the section. Analogically, the revenues of material, the acquisition
cost, and the disposal cost are formulated. This leads to the already known
objective function

P = R− C (3.39)

with the revenues R

R =
∑
e

(
r̄Ie +

∑
s

r̂Ies Q
I
es

)
QI

e +
∑
r

(
r̄Rr +

∑
s

r̂Rrs Q
R
rs

)
QR

r (3.40)

and the cost C

27 A function f(x) is concave if the linear interpolation of two function values of the points
x and y is less or equal than the function value of the interpolated points, i.e., λ f(x) +
(1− λ)f(y) ≤ f(λx+ (1− λ)y). Cf. Zangwill (1967): Non-linear programming , p. 345,
and Beale (1955): Minimizing a convex function, p. 173. Thus, adding two functions
f(x) and g(x) with this property results in λ f(x)+ (1−λ)f(y)+λ g(x)+ (1−λ)g(y) ≤
f(λx + (1 − λ)y) + g(λx + (1 − λ)y). If h(x) = f(x) + g(x) we can summarise to
λh(x) + (1− λ)h(y) ≤ h(λx+ (1− λ)y) which shows that h(x) is concave, too.
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C =
∑
c

(
cJc + c̄Ac +

∑
s

ĉAcs Q
C
cs

)
QC

c +
∑
d

(
c̄Dd +

∑
s

ĉDds Q
D
ds

)
QD

d . (3.41)

Furthermore, the sum of the section variables equals the quantity.

QI
e =

∑
s

QI
es ∀ e, QR

r =
∑
s

QR
rs ∀ r (3.42)

QC
c =

∑
s

QC
cs ∀ c, QD

d =
∑
s

QD
ds ∀ d (3.43)

According to the Eqs. (3.27) and (3.28) the section variables need to be
limited. Assuming that the first section starts at zero, e.g., Q̌I

e0 = 0, and
the last section S is an open interval, e.g., Q̌I

eS = ∞, the section limitations
are

0 ≤ QI
es ≤ Q̌I

es − Q̌I
e,s−1 ∀ e, s, 0 ≤ QR

rs ≤ Q̌R
rs − Q̌R

r,s−1 ∀ r, s (3.44)

0 ≤ QC
cs ≤ Q̌C

cs − Q̌C
c,s−1 ∀ c, s, 0 ≤ QD

ds ≤ Q̌D
ds − Q̌D

d,s−1 ∀ d, s .

(3.45)

The variables QI
e, Q

R
r , Q

C
c , and QD

d can be substituted throughout the model
with the corresponding sums, e.g.,

∑
s Q

I
es. This saves variables and the

constraints (3.42) and (3.43), but is worse for understanding it.
Ordering constraints are unnecessary. Ordering constraints assure that at

first the quantity of a section needs to be at its upper limit before the quan-
tity of the next section can be greater than zero. The reason why this is not
necessary is that the slope of a lower section is greater (in absolute terms
smaller) than the one of an upper section. Hence, the incentive is always to
put as much “quantity” into the lowest possible section, which is exactly the
intention of ordering constraints. For instance, let us consider the following.
Three sections exist with a basic price r̄ = 10 and the slopes r̂1 = −0.1,
r̂2 = −0.2, and r̂3 = −0.3. Each section variable must be in the interval
Qs ∈ [0, 10] ∀ s. Assuming the total quantity equals 15, i.e.,

∑3
s=1 Qs = 15,

there exist many combinations of Qs that fulfil this equation. For the so-
lution Q1 = Q2 = Q3 = 5 the resulting price is seven and the revenue 105.
Increasing the last section and decreasing the second one by one unit re-
sults in a decreased price of 6.9 and therefore a smaller revenue of 103.5,
because the quantity is equal. The reason for the lower price is obviously the
smaller slope of r̂3 compared to r̂2. Thus, the marginal decrease of the price
is smaller in the first section compared to the following sections. Therefore,
when maximising the revenue the incentive is to have a high price, which is
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realised by a least possible decrease of the basic price. And this is achieved
by choosing the greatest (or absolute smallest) slope possible, i.e., starting
with r̂1. Following this, the optimal ordering of the sections is starting from
the lowest and going to the upper ones, which would equal the behaviour of
ordering constraints. For the given example the solution Q1 = 10, Q2 = 5
and Q3 = 0 results in the highest price of eight with a revenue of 120.

3.3.3 Solution finding

3.3.3.1 Unconstrained optimum

Finding the optimal solution of the given problem is not as easy as with
just linear price-quantity dependencies. For standard quadratic solvers that
are also relatively fast for MILP the model formulation with the section
variables QC

cs, Q
I
es, Q

R
rs, and QD

ds must be used, because a partial defined
objective function cannot be used. The problem using section variables is
that for the solver these variables are assumed to be independent of each
other, even though they are not independent, and thus the objective func-
tion is not concave anymore. To avoid this, an existing solution algorithm
could be modified to include partially defined concave objective functions.
Candidates would be gradient based algorithms or Newton based solution
algorithm. The latter has been successfully used to solve such a problem.28

The benefit of a Newton based solution algorithm is the generally better
convergence than with gradient based methods.29 But a more promising
way with just using standard LP solvers is presented in the sequel.

To illustrate the procedure a small example shall be used. The quadratic
maximisation problem with an unconstrained optimum (QPUO) is defined
by a concave objective function

(QPUO): Maximise z = −x2
1−x2

2−
3

2
x1 x2+4x1+4x2+12

(3.46)
and four constraints

s.t. 2x1 + 5x2 ≥ 5 (3.47)

2x1 − 3x2 ≤ 5 (3.48)

28 Cf. Ullerich (2011a): Disassembly planning with linear PCF .
29 Cf. Alt (2002): Nichtlineare Optimierung .
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Fig. 3.7 Optimisation problem with unconstrained optimum

x1 ≥ 0 (3.49)

x2 ≤ 2 . (3.50)

The graphical interpretation of this problem with various levels of the objec-
tive function (i.e., z = −16,−12, . . . , 8, 12, 14, 15, 16) is depicted in Fig. 3.7.
For the beginning, the objective function is not partially defined yet. This
will come later. The four constraints are straight lines with the infeasible
side marked by the four short lines coming off the constraint. Thus, the fea-
sible solution space is located within the quadrangle and is convex. Every
feasible solution space limited by linear constraints is convex. This property
and that the solution space is completely bounded are basic requirements for
the following solution procedure. Bounding the solution space completely
for the given problems in disassembly planning is no restriction, because
an arbitrary large limit for every decision variable can be found easily and
might be given by workload capacity or the like.

The objective function levels in Fig. 3.7 are helpful to identify the gra-
dient at the corresponding solution points. The gradient ∇z(x) is directed
towards the greatest increase of the objective function at a given point and
can be calculated by the first order partial derivatives of the objective func-
tion with respect to the decision variables.
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∇z(x) =

(
∂z(x)
∂x1

∂z(x)
∂x2

)
=

(−2x1 − 3
2x2 + 4

−2x2 − 3
2x1 + 4

)
(3.51)

Furthermore, the gradient is right-angled to the tangent on the correspond-
ing level curve. The gradient is of major importance, because the coefficients
of the objective function of the used LP equal the gradient at a given so-
lution point. To illustrate this, let us choose the point (2.5, 0) as starting
point.30 The gradient at this point is (−1, 1/4)T, which results from the par-
tial derivatives with respect to x1 and x2 at the point (2.5, 0). These two
values −1 and 1/4 are the coefficients of the objective function of the LP.
The constraints are initially identical to the ones of the (QPUO). Thus the
first LP to solve is:

Maximise z = −x1 +
1

4
x2 (3.52)

s.t. 2x1 + 5x2 ≥ 5 (3.53)

2x1 − 3x2 ≤ 5 (3.54)

x1 ≥ 0 (3.55)

x2 ≤ 2 . (3.56)

The solution of the LP is the point (0, 2). Using this point the coefficients
of the objective function of the LP are updated with the gradient at this
point, which is (1, 0)T. Hence, the objective function of the LP changes to

Maximise z = x1 . (3.57)

Solving this again results in the solution (5.5, 2). Updating the coefficients
and solving it again leads to the solution (0, 1). Again, updating the coef-
ficients and solving results in the already known solution (5.5, 2). At this
moment a cycle is detected, which is an oscillation between the points (0, 1)
and (5.5, 2). Thus, the solution is “somewhere” in between these two points.
But, the solution we are looking for does not have to be on the line seg-
ment between these two points. Therefore, further steps are required. These
steps are motivated by the solution algorithms for QLP by Beale (adding
assisting constraints) and Rosen (determining the step width).31

30 An infeasible point like (0, 0) can be used as well.
31 Cf. Beale (1959): Quadratic programming, p. 232, and Rosen (1960): Gradient pro-
jection method , p. 203.
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Starting from one of the oscillation points (e.g., xi−1 = (0, 1)T) a vector
towards another oscillation point32 (e.g., xi = (5.5, 2)T) is determined. This
vector is called direction vector s. Along this vector a point x̂ exists where
the gradient ∇z(x̂) is orthogonal to the vector s, i.e., the direction vector is
the tangent of the objective function at point x̂. At this point the highest
objective value is achieved along the vector s. This point x̂ is the next
iterative solution point and it can be found using the step-size ρ calculation
according to Rosen

ρ =
sT∇z(xi−1)

sT (∇z(xi−1)−∇z(xi))
. (3.58)

The step size is illustrated in Fig. 3.8 with a direction vector from an arbi-
trary xi−1 to another xi. The gradient at xi−1 forms an acute angle with
the vector s, which is marked with a “+”, because the vector product of
∇z(xi−1) and s is greater than zero. This also means that along the direc-
tion vector the objective value increases. At the end of s, i.e., at xi, the
gradient ∇z(xi) and s form an obtuse angle, which results in a negative
vector product. This indicates that a better objective value is reached from
xi by moving in the reverse direction of s. Therefore, there exists a point x̂
in between xi−1 and xi with the highest objective value along s starting at
xi−1. And the step size ρ as fraction of the length of s is the one to find x̂.

If ρ equals zero, the actual solution xi−1 is the one with the highest ob-
jective value along the vector s and this means that xi−1 is the optimal
solution. On the other hand, if ρ is greater than one, x̂ would be outside the
feasible area. In this case the solution on the border of the feasible space xi

is checked whether a further improvement with an updated objective func-
tion under the same constraints is possible. If no improvement is possible,
xi is the next iterative solution, i.e., x̂ = xi. Otherwise, the procedure is
continued with the solution xi and the new found one by determining a new
direction vector s. Note that the cases ρ ≤ 0 and ρ ≥ 1 cannot appear in
the first run of this part of the solution procedure, because of the oscillating
solutions of the preceding LP. If ρ is greater than or equals one, the LP with
updated objective function coefficients and the constraints of the (QPUO)
is solved to identify possible further improvement. Else, if 0 < ρ < 1, the
iterative solution point is determined by the linear combination

x̂ = xi−1 + ρ s . (3.59)

32 There could be more than two oscillation points.
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Fig. 3.8 Visualisation of step-size determination

Since the solution of a LP is always situated on an edge of the feasible
solution space, at least one assisting constraint needs to be added (in the
case 0 < ρ < 1) such that the subsequent LP solving can result in this point
x̂. Otherwise, it would always end in the known oscillation points from the
beginning. In general, up to the dimension of the solution space (i.e., the
number of decision variables) many assisting constraints can be necessary
to determine the optimal solution. But this presented approach works with
a direction vector and one assisting constraint to keep the flexibility of the
solution finding of standard LP solvers at the cost of worse convergence.
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Since the algorithm also stops at a step width of ρ = 0 an extra edge of the
solution space does not have to be generated by extra constraints.

The assisting constraint should allow the best improvement of the objec-
tive value from the point x̂. Hence, x̂ as well as the gradient at x̂ should
be “within” the hyperplane that forms the assisting constraint. But with
these two elements a hyperplane is not completely defined, yet. To illustrate
this, the hyperplane could be any hyperplane rotated around the gradient
at point x̂. Thus, we look for a normal vector n of the hyperplane that
is orthogonal to the gradient at point x̂. One such vector is the direction
vector s, i.e., n = s. To completely define the assisting constraint the right
hand side value is missing, which assures that x̂ is element of the hyper-
plane. This value is easily calculated by sTx̂. Now the assisting constraint
is completely defined and can be added to the existing LP in the form

sTx = sTx̂ . (3.60)

Updating the coefficients or the objective function and solving the LP
leads to a (possibly new) solution. If the solution is the same as the last
iterative solution point or the step width equals zero the optimal solution
is found. Otherwise, the procedure repeats until the above mentioned con-
ditions are fulfilled. The complete algorithm is depicted in Fig. 3.9.

Our small example shall illustrate the algorithm. Our last solution x4 =
(5.5, 2)T is a solution that already appeared, which answers the question
in the diamond on the bottom left with “yes”. Therefore, we continue the
flowchart on the top of the right side. Starting at x3 = (0, 1)T the direction
vector equals

s = x4 − x3 =

(
11
2
2

)
−
(
0
1

)
=

(
11
2
1

)
. (3.61)

The step size ρ results in

ρ =

(
11
2
1

)T

∇z

((
0
1

))
(

11
2
1

)T(
∇z

((
0
1

))
−∇z

((
11
2
2

))) =

(
11
2
1

)T( 5
2
2

)
(

11
2
1

)T(( 5
2
2

)
−
(−10
− 33

4

))
=

63

316
. (3.62)

Since 0 < ρ < 1 is valid, the iteration point x̂ is
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Fig. 3.9 Flowchart of QLP solution algorithm

x̂ =

(
0
1

)
+

63

316

( 11
2

1

)
=

(
693
632
379
316

)
. (3.63)

Consequently to Eq. (3.60), the assisting constraint to be added for the next
solution step is (

11
2 1

)
x =

(
11
2 1

)( 693
632
379
316

)
=

9139

1264
(3.64)

or in “standard” polynomial equation writing

11

2
x1 + 1x2 =

9139

1264
. (3.65)
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Fig. 3.10 Solution path of illustrative example

The objective coefficients are updated to the gradient at point x̂ (i.e., 5/632
and −55/1264) and the LP is solved anew. The next solution x5 would be the
point (13125/10744, 2747/5372) which is the edge of the assisting constraint and
the first constraint (3.47). This solution does not equal the last iterative
solution point x̂. Thus, the optimal solution is not found yet. The value of
x4 is updated by the last iterative solution, i.e., x5 = x̂, and the procedure
is repeated with the updated iteration solution point.

This new solution together with the last solution determines the direction
vector s for the new iteration. Since s is not zero the optimum is not found
yet. A new iteration point x̂ is calculated and a new assisting constraint
is added. Before adding the new constraint the old assisting constraint is
deleted. Therefore, only one assisting constraint exists in each further it-
eration. The coefficients of the objective function of the LP are updated
and the solving is repeated. This procedure iterates until the iteration point
of the actual iteration equals the one of the preceding iteration. Thereby,
equal means that they are identical to a given ε of for example ε = 10−9.
The solution path is displayed in Fig. 3.10 and 3.11, with the latter being a
magnification for emphasising on the convergence. The necessary iterations
to find the optimum are 68 (see Table 3.12). This illustrates the rather bad
convergence of algorithms solely based on the gradient.
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Fig. 3.11 Zoom in on solution path of illustrative example

Table 3.12 Iterative solution points of illustrative example

iteration solution iteration solution iteration solution iteration solution

0 (2.5, 0) 4 (1.0965, 1.1994) 8 (1.1299, 1.1587) 12 (1.1392, 1.1473)
1 (0, 2) 5 (1.1019, 1.1698) 9 (1.1314, 1.1504) 13 (1.1396, 1.1450)
2 (5.5, 2) 6 (1.1183, 1.1728) 10 (1.1360, 1.1513) •

•
•

•
•
•

3 (0, 1) 7 (1.1212, 1.1571) 11 (1.1368, 1.1469) 68 (1.1429, 1.1429)

The values are rounded to four digits. Values with less than four post decimal digits
indicate an exact value without rounding being necessary.

An improved version of the algorithm in terms of convergence is the fol-
lowing. This version is confined to objective functions with a known uncon-
strained optimum. For any (concave or convex) quadratic objective function
the unconstrained optimum can easily be determined by solving the equa-
tion system of the first order partial derivatives of the objective functions
with respect to the decision variables equalling zero. This optimal solution
can then be tested on feasibility according to the given constraints. If it
is feasible the optimal solution is found. Otherwise, the above mentioned
algorithm is applied with the following modification. Instead of using the
direction vector s as normal vector of the assisting constraint a different
normal vector is constructed. The desired normal vector n should be or-



3.3 Piecewise linear price-quantity dependencies 73

thogonal to the vector o = xopt − x̂ from the iteration point x̂ towards the
unconstrained optimum xopt. The equation that represents this is

nTo = 0 . (3.66)

But many vectors comply with this property so that a further property is
necessary. We assume that the normal vector n is a linear combination of
the direction vector s and the vector towards the unconstrained optimum.33

This property can be expressed by the equation

α s+ β o = n . (3.67)

The length of n is not of interest so that β can be set to the value one.
Substituting n in Eq. (3.66) by Eq. (3.67) leads to

(α s+ o)
T
o = 0 . (3.68)

Solving this equation with respect to α results in

α = −oTo

sTo
. (3.69)

Hence the desired normal vector is

n = o− oTo

sTo
s . (3.70)

In the case that the vector o is orthogonal to the direction vector s the
direction vector is the wanted normal vector n, i.e., n = s. In an additional
step the normal vector can be normalised to the length one, if desired.
The assisting constraint is not completely defined yet, because the right
hand side value is missing. This value is easily calculated by nTx̂. Now the
assisting constraint is completely defined and can be added to the existing
LP in the form

nTx = nTx̂ . (3.71)

Another special case is present when s and o are linear dependent. This
happens when the new solution is located on the vector from x̂ towards xopt.
In this case the vector n equals the zero vector. This is comparable with not
adding a constraint at all, because 0Tx = 0 is true for all x. The remaining
steps of the algorithm equal the ones from the preceding approach.

33 The property of being a linear combination might not be the best one, but the deter-
mination of the normal vector is straightforward.
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Table 3.13 Iterative solution points of illustrative example without gradient

iteration solution iteration solution iteration solution

0 (2.5, 0) 2 (5.5, 2) 4 (1.0965, 1.1994)
1 (0, 2) 3 (0, 1) 5 (1.1429, 1.1429)

The values are rounded to four digits. Values with less than four post decimal digits
indicate an exact value without rounding being necessary.

The different calculation shall be illustrated by the same small example as
above. Again, we start our consideration at the point (0, 1). The direction

vector is s = (11/2, 1)
T

and the iteration point is x̂ = (693/632, 379/316)
T
.

The feasible unconstrained optimum is xopt = (8/7, 8/7)
T
, which can be

determined by solving the equation system

∂z(x)

∂x1
= −2x1 − 3

2
x2 + 4 = 0 (3.72)

∂z(x)

∂x2
= −2x2 − 3

2
x1 + 4 = 0 . (3.73)

According to Eq. (3.70) and the vector o =
(

205
4424 − 125

2212

)T
the normal vector

is

n = o− oTo

sTo
s =

(
− 250

2457

− 205
2457

)
. (3.74)

Obtaining the right hand side value for the assisting constraint (−40/189),
updating the objective function coefficients of the LP with the values∇z(x̂),

and solving the LP results in the solution x4 = (15/8, 1/4)
T
. The next iter-

ative solution point is x̂ = (8/7, 8/7)
T
, which equals the optimal solution.

Nonetheless, another assisting constraint is added, the LP is solved again,
and a step width of ρ = 0 signals that the last iterative solution point is the
optimal one. Hence, the algorithm stops.

The solution finding with this version is depicted in Fig. 3.12. As it is eas-
ily recognisable the convergence is much better, because after six iterations
the optimal solution is found (see Table 3.13). Of course, the optimum is
known beforehand, but for cases with constrained optima the convergence
should be better, too, especially when the first direction vector goes through
the solution space (and not along just one edge of the solution space) and the
unconstrained optimum is relatively close to the solution space. An example
is depicted in Fig. 3.13.
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Fig. 3.12 Solution path of illustrative example not using the gradient
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Fig. 3.13 Comparison of gradient and direct version

The solution path of the version with the gradient is marked by the solid
grey line/arrow (see Fig. 3.11 to compare) and the path with vector o is
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marked by the solid black arrow. Additionally, a constraint is added—in
the left part one that is further away from the unconstrained optimum and
in the right part one that is closer to the optimum. In the left part the
number of iterations for both versions is almost identical. From point A the
constraint is reached within one step (5) and the next step (6) is along the
constraint or just one step (5) to the constrained optimum B. In the right
part, the version with vector o reaches the constrained optimum C in less
steps (i.e., one step: 5) than the gradient version (eight steps: 5 through 12).
The modified algorithm flow is depicted in Fig. 3.14.

3.3.3.2 Constrained optimum

To illustrate the case with a constrained optimum the constraints of
our small example from above (QPUO) are slightly modified so that the
quadratic problem with a constrained optimum (QPCO) results.

(QPCO): Maximise z = −x2
1−x2

2−
3

2
x1 x2+4x1+4x2+12 (3.75)

s.t. 2x1 + 5x2 ≥ 5 (3.76)

2x1 − 3x2 ≤ 5 (3.77)

−x1 + 10x2 ≤ 10 (3.78)

x1 + 10x2 ≤ 14 (3.79)

The first step according to the algorithm (see Fig. 3.14) is to determine

the unconstrained optimum, which is still xopt = (8/7, 8/7)
T
. This solution is

not feasible, because of constraint (3.78). Therefore a LP is generated with
the same constraints as the (QPCO) and the two coefficients of the linear
objective function are 4 and 4 (i.e., the gradient), assuming that we start

with x0 = (0, 0)
T
.

The problem and its solution path is visualised in Fig. 3.15 and the
solution points are listed in Table 3.14. Starting the solution finding with the
gradient at point (0, 0) results in an oscillation between the points (4, 1) and
(0, 1). This means that the optimal solution should be found “somewhere”
in between these two points. The direction vector from (0, 1) to (4, 1) is

s = (4, 0)
T
. The step width for the highest objective value along the vector

s is ρ = 5/16. Thus, the iteration point equals x̂ =
(
5
4 , 1

)T
. The normal vector

of the assisting constraint is orthogonal to the vector o from x̂ towards xopt.
Updating the coefficients of the LP with the gradient ∇z(x̂) and solving
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∗ . . . not with linear variables
 . . . modified for linear variables

Fig. 3.14 Flowchart of modified QLP solution algorithm

it leads to the solution (50/43, 48/43). The resulting step width is greater
than one which leads us to an update of the objective function with the
gradient at (50/43, 48/43) and solving it again. The resulting solution is the
same, which means that this is the next iterative solution. The assisting
constraint is removed and the LP is solved anew. The solution is (2, 6/5).
Continuing this procedure according to the algorithm leads to the optimal
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Fig. 3.15 Solution path of illustrative example (QPCO)

Table 3.14 Iterative solution points of illustrative example (QPCO)

iteration solution iteration solution iteration solution

0 (0, 0) 2 (0, 1) 4 (1.1628, 1.1163)
1 (4, 1) 3 (1.25, 1) 5 (1.1638, 1.1164)

The values are rounded to four digits. Values with less than four post decimal digits
indicate an exact value without rounding being necessary.

solution x5 = (135/116, 259/232) with an objective value of the (QPCO) of
7689/464 ≈ 16.5711.

3.3.3.3 Section inclusion

So far, a solution algorithm is presented that can be substituted by the
standard QLP solver, because we did not consider the sections of the objec-
tive function, i.e., the saltuses of the first order partial derivatives. But this
is changed in the following. Therefore, the objective function of the small
example (QPCO) is changed to a quadratic problem with constrained opti-
mum and sections (QPCOS). For each variable (x1 and x2) three sections



3.3 Piecewise linear price-quantity dependencies 79

exist. For variable x1 the section borders are x1 = 1 and x1 = 2. For variable
x2 the borders are x2 = 1/2 and x2 = 3/2. The three sections regarding x1

are labelled with A, B, and C and regarding x2 with I, II, and III, respec-
tively. In total nine section combinations exist and for each combination the
objective function is slightly changed to demonstrate the changes caused by
the piecewise linear structure of the quantity-price dependency. Note that
the resulting objective function is concave and continuous, even though it is
partially defined. For the case that x1 ≤ 1 and x2 ≤ 1/2, which is denoted by
the section combination “A I”, the objective function is the already known
of the (QPCO). The objective function with all nine cases is

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x2
1 − x2

2 − 3
2
x1x2 + 4x1 + 4x2 + 12 for x1 ≤ 1, x2 ≤ 1

2
(A I)

− 11
10

x2
1 − x2

2 − 3
2
x1x2 + 4x1 + 4x2 + 121

10
for 1 < x1 ≤ 2, x2 ≤ 1

2
(B I)

− 6
5
x2
1 − x2

2 − 3
2
x1x2 + 4x1 + 4x2 + 25

2
for 2 < x1 , x2 ≤ 1

2
(C I)

−x2
1 − 11

10
x2
2 − 3

2
x1x2 + 4x1 + 4x2 + 481

40
for x1 ≤ 1, 1

2
< x2 ≤ 3

2
(A II)

− 11
10

x2
1 − 11

10
x2
2 − 3

2
x1x2 + 4x1 + 4x2 + 97

8
for 1 < x1 ≤ 2, 1

2
< x2 ≤ 3

2
(B II)

− 6
5
x2
1 − 11

10
x2
2 − 3

2
x1x2 + 4x1 + 4x2 + 501

40
for 2 < x1 , 1

2
< x2 ≤ 3

2
(C II)

−x2
1 − 6

5
x2
2 − 3

2
x1x2 + 4x1 + 4x2 + 49

4
for x1 ≤ 1, 3

2
< x2 (A III)

− 11
10

x2
1 − 6

5
x2
2 − 3

2
x1x2 + 4x1 + 4x2 + 247

20
for 1 < x1 ≤ 2, 3

2
< x2 (B III)

− 6
5
x2
1 − 6

5
x2
2 − 3

2
x1x2 + 4x1 + 4x2 + 51

4
for 2 < x1 , 3

2
< x2 (C III)

.

(3.80)
This partially defined objective function with the nine cases can also be
written as a function with two partially defined terms with three cases each.

(QPCOS): Maximise z =

⎛⎜⎝
⎧⎪⎨⎪⎩
−x2

1 x1 ≤ 1 (A)

− 11
10 x

2
1 +

1
10 1 < x1 ≤ 2 (B)

− 6
5 x

2
1 +

1
2 2 < x1 (C)

⎞⎟⎠

+

⎛⎜⎝
⎧⎪⎨⎪⎩
−x2

2 x2 ≤ 1
2 (I)

− 11
10 x

2
2 +

1
40

1
2 < x2 ≤ 3

2 (II)

− 6
5 x

2
2 +

1
4

3
2 < x2 (III)

⎞⎟⎠
− 3

2
x1 x2 + 4x1 + 4x2 + 12 (3.81)

s.t. 2x1 + 5x2 ≥ 5 (3.82)

2x1 − 3x2 ≤ 5 (3.83)

−x1 + 20x2 ≤ 20 (3.84)
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Fig. 3.16 Solution path of illustrative example with sections

x1 + 20x2 ≤ 24 (3.85)

As can be seen by the partially defined function in Eq. (3.81) the decision
variables and its section borders are treated individually. The constraints
are slightly modified so that the unconstrained optimum is not within the
feasible solution space. The graphical representation of the problem is de-
picted in Fig. 3.16. The kinks in the objective level curves appear at the
section borders, which are marked with the dotted and dashed grey lines.

The first step according to the solution algorithm (see Fig. 3.14) is to
determine the unconstrained optimum. This is a bit more extensive than
with an objective function that is not partially defined. Firstly, the first
order partial derivatives need to be calculated.

∂z(x)

∂x1
=

⎧⎪⎨⎪⎩
−2x1 − 3

2 x2 + 4 x1 ≤ 1 (A)

− 11
5 x1 − 3

2 x2 + 4 1 < x1 ≤ 2 (B)

− 12
5 x1 − 3

2 x2 + 4 2 < x1 (C)

(3.86)
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Table 3.15 Optimal solutions of section combinations

sections x1 x2 sections x1 x2 sections x1 x2

A I 8/7 × 8/7 × B I 40/43 × 56/43 × C I 40/51 × 24/17 ×
A II 56/43 × 40/43 � B II 40/37 � 40/37 � C II 280/303 × 120/101 �
A III 24/17 × 40/51 × B III 120/101 � 280/303 × C III 40/39 × 40/39 ×

The “�” indicates that the value is within the corresponding section and “×” if not.
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Fig. 3.17 Determining unconstrained optimum with partially defined objective function

∂z(x)

∂x2
=

⎧⎪⎨⎪⎩
−2x2 − 3

2 x1 + 4 x2 ≤ 1
2 (I)

− 11
5 x2 − 3

2 x1 + 4 1
2 < x2 ≤ 3

2 (II)

− 12
5 x2 − 3

2 x1 + 4 3
2 < x2 (III)

(3.87)

For each combination of sections A through C and I through III the optima
of the corresponding objective functions are listed in Table 3.15. Only the
combination of the sections B and II leads to an optimal solution that is
located within the corresponding section. This procedure to find the opti-
mum is rather extensive and does not directly account for the case that the
optimum is located exactly on a section border.

Before we consider multiple variables let us take a look at the finding
process with just one variable. In Fig. 3.17 four sections with their individual
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x2 = 1.5

x2 = 0.5

x1 = 1 x1 = 2
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+ •
B II

• •
C II

A I

++

B I

−+
C I

Fig. 3.18 Selective determination of the unconstrained optimum

functions are displayed. The resulting concave function is represented by
the solid line. Note that in general it is not the minimum of all section
functions.34 For example, starting from the smallest value (i.e., from the
left most section) the optimum of this section is located right of the section.
Since, the objective function is concave the optimum must be right of the
first section. Thus, the optimum of the second section is determined. It also is
located right of the corresponding section. Again, the optimummust be right
of the section. Taking a look at the third section shows that the optimum of
this section is located left of it. Therefore, the optimum is between section
two and three, i.e., on the section border. A consideration of the fourth
section is not necessary. The same result is obtained if the procedure is
started from the other side, i.e., from the greatest to the smallest value.

This consideration can be transferred to the case with more variables.
When we start with the section combination “A I” we find that both values
(x1 and x2) of the optimum are greater than the section limits allow. Thus,
it is expected that either the next section for greater x1 or x2 or both
might contain the optimum. This information is represented by the “+” in
Fig. 3.18. (The left symbol indicates the position of the optimal value x1

in regard to the section and the right symbol the one for the value x2.)

34 The problem specific individual functions are more restricted in their course of the
function than displayed here. The individual optima of all succeeding sections (i.e., for
greater values) are left (i.e., have smaller values) of the one of the actual section (see
appendix B.3). Furthermore, the individual objective functions of all preceding and suc-
ceeding sections have greater values in the actual section than the individual objective
function of the section (see appendix B.4). Hence, for our problem the resulting concave
objective function is the minimum of all individual objective functions. This would make
the considerations easier, but we try to keep it as general as possible.



3.3 Piecewise linear price-quantity dependencies 83

Optimum on one section border

A III B III C III

• −

A II B II C II

• +

A I

++

B I

++

C I

−+

Optimum on two section borders

A III B III

+−
C III

−−

A II

+ •
B II

++

C II

−+

A I

++
B I C I

Fig. 3.19 Selective determination of the unconstrained optimum on section border

The “−” would indicate that a section with lower values might contain the
optimum. If the optimal value is within the section a “•” is used.

So, starting at “A I”, the next section with regard to x1 and x2 might
contain the optimum, because we have two “+”. Which one we consider
first does not matter. An increase of x1 leads to the section combination
“B I”. The optimal value is not in this section, because of the “+” for x2.
Thus, with respect to x2 the optimal solution is expected to be in a higher
section. On the contrary, the optimal value of x1 is located in a lower sec-
tion. But, we just came this way. Therefore, the unexplored way is taken
to the section combination “B II”. Solving the objective function of this
combination, results in a solution that is within the corresponding section
limits. Hence, the optimal solution is found and no further optima of section
combinations need to be determined. Note that the basic requirements are
a concave and continuous objective function. According to that, the uncon-
strained optimum of the partially defined objective function is (40/37, 40/37)
(see Table 3.15). Thereby, we needed only three optima calculations and
not all nine. The grey path from “A I” to “B II” is an alternative if we
had chosen an increase of x2 instead of x1 in the first place. Note that it is
advisable to start the process of finding the optimum in the middle (e.g.,
“B II”), because from there the maximal path to each node is two. When
starting at “A I”, the maximal path is four.

Figure 3.19 shows exemplary situations of the optimum finding with the
optimum lying on one section border or two section borders. These cases
can be identified by circles within the finding path. On the left side the
optimal value for x2 is the section border between sections “II” and “III”.
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Fig. 3.20 Gradients at section borders along direction vector

The value for x1 is in the section “C”. In the example on the right side of
the figure the optimal value is situated on the borders between sections “B”
and “C” as well as “II” and “III”.

In the above mentioned, the general case of interdependent optimal values
is described, i.e., the optimal value of x1 depends on the value x2 and
vice versa (see Eqs. (3.86) and (3.87) with x1 and x2 being in the first
order derivatives). An effect that is based on this interdependence is that
in Fig. 3.18 the “−” changes to a “•” (from “B I” to “B II”) for x1 even
though only the section with regard to x2 is changed. If this interdependence
between the variables does not exist, the solution finding is simpler. Each
variable is considered separately (see Sect. 3.3.4).

Now that we have the unconstrained optimum of our problem (QPCOS),
we find that it is infeasible. Hence, a LP is created and solved—according to
the above developed solution algorithm. After two LP updates and solvings
an oscillation is detected. This leads to the second part of the algorithm.
The direction vector is calculated with s = (4, 0). Starting from the point
(0, 1) the direction vector crosses two section borders at x1 = 1 and x1 = 2
(see Fig. 3.16). This needs to be considered in the determination of the step
width ρ.

Figure 3.20 illustrates the step width determination. (The gradients with
the dotted parts are shortened to fit in the figure.) The gradient at xi−1

and s form an acute angle, i.e., the scalar product is greater than zero. (A
scalar product less than zero would indicate that the vector s points in the
direction of a decrease of the objective.) The gradient of the first section on
the section border x1 = 1 still forms an acute angle with s. The gradients
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of the first section are marked with one, the ones of the second section with
two, and the ones of the third section with three arrow heads. As can be
seen, the gradient of xi forms an obtuse angle with s. This means, that a
point x̂ with a better objective value is located in between xi−1 and xi.

For quadratic continuously defined objective functions (i.e., without the
sections) the calculation in Eqs. (3.58) and (3.59) leads to x̂. But, because
of the abrupt change of the gradient at the section borders, this calculation
cannot be used directly. The abrupt change is observable for example at
section border x1 = 1 where the gradient of objective function

−x2
1 −

11

10
x2
2 +

1

40
− 3

2
x1 x2 + 4x1 + 4x2 + 12 (3.88)

(i.e., section combination “A II”) is ∇z((1, 1)) = (1/2, 3/10)
T
and not identi-

cal with the gradient of the objective function

−11

10
x2
1 +

1

10
− 11

10
x2
2 +

1

40
− 3

2
x1 x2 + 4x1 + 4x2 + 12 (3.89)

(i.e., section combination “B II”) with ∇z((1, 1)) = (3/10, 3/10)
T
. The gra-

dient with one arrow head forms a smaller angle with s than the gradient
of the second section with two arrow heads. This can also be observed at
the section border x1 = 2. The gradients at the section border of the higher
section point further towards smaller values of x1, because the first order
derivative of the higher section is smaller than the one of the lower section.
(The same applies to section borders with respect to x2.) This is a property
of the required concavity (see Sect. 3.3.1).

To find the point x̂ where the gradient is orthogonal to s the sections need
to be considered separately. The procedure of determining the step width ρ
to calculate x̂ according to Eq. (3.59) is depicted in Fig. 3.21. The content
of this flowchart substitutes the top right box of the flowchart in Fig. 3.9
and 3.14. Firstly, we check whether a point with an orthogonal gradient on
s is overrun and whether there exists a section change in between xi−1 and
xi. Only if both properties are true a consideration section by section is
necessary. Otherwise, the known determination of ρ can be used. If we need
to do it section by section the first step is to determine the relevant sections
and sort them in order of passing. To stick with our example of three sections
with respect to x1 and three to x2 we note them like constraints:

Bx− h = b (3.90)
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s := xi − xi−1

yes

nos∇z(xi) < 0
and section change

exists along s?

Determine section borders
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ρ := sT∇z(xi−1)
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sT∇zj(x

B
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sT(∇zj(xB
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)

ρ := ρBj−1

ρ := ρBj−1 +
sT∇zj(x

B
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j−1)−∇zj(xB

j ))

(
ρBj − ρBj−1

)

Fig. 3.21 Flowchart of step width calculation
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1 0
1 0
0 1
0 1

⎞⎟⎟⎠x− h =

⎛⎜⎜⎜⎝
1

2
1
2
3
2

⎞⎟⎟⎟⎠ . (3.91)

Substituting x by xi−1 and xi and comparing the results of hi−1 and hi,
respectively,

hi−1 =

⎛⎜⎜⎝
1 0
1 0
0 1
0 1

⎞⎟⎟⎠(
0
1

)
−

⎛⎜⎜⎝
1
2
1
2
3
2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1
−2
1
2− 1
2

⎞⎟⎟⎠, hi =

⎛⎜⎜⎝
1 0
1 0
0 1
0 1

⎞⎟⎟⎠(
4
1

)
−

⎛⎜⎜⎝
1
2
1
2
3
2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
3
2
1
2− 1
2

⎞⎟⎟⎠,
(3.92)

we notice a change of signs in the first two rows of the vectors. This indicates
a section change at these two values, i.e., the path along s starting at xi−1

crosses these two section borders. And since s∇z((4, 1)T) = −142/5 < 0
a section by section consideration is necessary, because a point with an
orthogonal gradient is passed. We further see the step width until we reach
the section borders when we divide the first and second element of hi−1 by
the corresponding scalar products of the first and second row of B with the
vector s. Doing this we get∣∣∣∣∣∣∣∣

−1(
1 0
)(4

0

)
∣∣∣∣∣∣∣∣ =

1

4
and

∣∣∣∣∣∣∣∣
−2(

1 0
)(4

0

)
∣∣∣∣∣∣∣∣ =

1

2
. (3.93)

The first section border is reached after a quarter of the direction vector
and the second section border after a half of s. Hence, ρB1 = 1/4 and ρB2 = 1/2
are the values required for the section borders j = 1 and j = 2, respectively.
The points on the direction vector and the section borders are

xB
1 =

(
0
1

)
+

1

4

(
4
0

)
=

(
1
1

)
and xB

2 =

(
0
1

)
+

1

2

(
4
0

)
=

(
2
1

)
.

(3.94)
The gradient at xB

1—using the corresponding objective function xi−1 is
in—multiplied with s results in s∇z1

(
xB
1

)
= 2, which is not smaller than

zero. Therefore, x̂ is not within this first section. Border j = 1 is not the last
section border we consider and thus we increase the section border index by
one to j = 2. The gradient of the objective of the second section at the first
section border multiplied with s is s∇z2

(
xB
1

)
= 6/5, which is still greater
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Table 3.16 Iterative solution points of illustrative example with sections

iteration solution iteration solution iteration solution

0 (0, 0) 2 (0, 1) 4 (1.0989, 1.0549)
1 (4, 1) 3 (1.1364, 1) 5 (1.0996, 1.0550)

The values are rounded to four digits. Values with less than four post decimal digits
indicate an exact value without rounding being necessary.

than zero. This means that x̂ is not directly on the section border, because
the objective value still increases along the direction vector. We check the
next section border and see that s∇z2

(
xB
2

)
= −38/5 is smaller than zero.

Hence, the wanted point x̂ is situated within this section. The calculation
of the step width results in

ρ = ρBj−1 +
sT∇z

(
xB
j−1

)
sT
(∇z

(
xB
j−1

)−∇z
(
xB
j

)) (ρBj − ρBj−1

)
(3.95)

=
1

4
+

(
4 0
)( 3

10
3
10

)
(
4 0
)(( 3

10
3
10

)
−
(
− 19

10

− 6
5

)) (
1

2
− 1

4

)
=

25

88
. (3.96)

A further consideration of succeeding sections is not necessary and the al-
gorithm continues as depicted in the flow diagram of Fig. 3.9 or 3.14. Thus,
the next iteration point x̂ is (25/22, 1). It is the solution of the third iteration
(see Table 3.16).

Two further iterations are necessary and the optimal solution is found.
The complete solution finding path is illustrated in Fig. 3.16. For the sake
of completeness it shall be mentioned that for finding the optimal solu-
tion of a concave quadratic objective function the solution algorithm by
Rosen35 can also be modified by the elements of the step width determina-
tion and the partially defined objective function. But, with many variables
and constraints and possibly over-determined feasible solution space, it is
numerically difficult to find the optimal solution following the theoretical
steps. An according sketch for an algorithm still using LPs first can be
found in appendix B.5. With all the considerations above we can now find
the optimal solution of our disassembly planning example with standard LP
software.

35 Cf. Rosen (1960): Gradient projection method .
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3.3.3.4 Mix of quadratic and linear variables

In the above we considered pure quadratic objective functions, i.e., no linear
variables exist within the objective function. But many quadratic planning
problems contain also linear variables. Therefore, a discussion about this
case is necessary in the sequel. The problem with linear variables is that they
do not have a finite optimum. The unconstrained maximum and minimum
of the function y = 4x is plus and minus infinity, respectively. This cannot
be used in the presented algorithm. Three possibilities to handle this case
are discussed in the following:

1. adding quadratic terms,
2. using the gradient only, and
3. combining the unconstrained optimum and the gradient.

The small example is slightly modified to illustrate this case. The variable
x1 is still quadratic and x2 becomes linear. The quadratic and linear problem
with linear constraints (QLLP) is defined by:

(QLLP): Maximise z =

⎛⎜⎝
⎧⎪⎨⎪⎩
−x2

1 x1 ≤ 1

− 11
10 x

2
1 +

1
10 1 < x1 ≤ 2

− 6
5 x

2
1 +

1
2 2 < x1

⎞⎟⎠+4x1+4x2+12

(3.97)

s.t. 2x1 + 5x2 ≥ 5 (3.98)

2x1 − 3x2 ≤ 5 (3.99)

−x1 + 20x2 ≤ 20 (3.100)

x1 + 20x2 ≤ 24 . (3.101)

The first option we consider is adding quadratic terms. The idea is that
the objective function is extended by a quadratic term of a linear variable
with very little influence, e.g., −10−9 x2

2.
36 Doing so, the unconstrained opti-

mum would be (20/11, 2·109). This equals choosing an arbitrary large number
for the linear variables as finite optimum instead of infinity. Note that the
coefficient of the additional quadratic term should be as small as possible
to avoid a big influence and to assure that the unconstrained optimum is
outside the feasible solution space. On the other hand, the coefficient should
not be too small to be able to do the calculations with a computer, which
has a certain precision. Having added the quadratic terms the presented

36 The quadratic terms must still assure an overall concave objective function.
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solution algorithm (see Fig. 3.14) in its basic form can be applied. A dis-
advantage—apart from the right choosing of the coefficients—is that the
gained “optimal” solution is not really optimal, because of the disturbance
by the small quadratic terms.

The second option is the usage of the algorithm depicted in Fig. 3.9.
With this no determination of an unconstrained optimum is necessary and
the used gradient can be easily calculated. The only drawback might be a
possibly worse convergence compared to the third option.

The third option is a combination of both approaches, i.e., a finite opti-
mum for quadratic variables is combined with the gradient for linear vari-
ables. A finite optimum does still not exist. That is why we skip the steps
marked with an asterisk in Fig. 3.14. But in the succeeding we still use the
partly existing finite optimum. The approach is derived from the first option
without adding quadratic terms. For all quadratic variables we determine
the finite optimal values. For example, the value of x1 where the maximum
value (with respect to x1) is achieved is x1 = 20/11. For the linear variable
x2 no such optimal value exists. Hence, the feasibility check with the uncon-
strained optimum is skipped, too. The succeeding steps of the algorithm in
Fig. 3.14 are unchanged with the exception of the calculation of o (marked
with a triangle in Fig. 3.14). This vector is calculated in the following way.

For variables with a finite optimum value (e.g., x1 = 20/11) the cal-
culation of o = xopt − x̂ is conducted and for all other variables (e.g.,
x2) the gradient is used. For example, if the iterative solution point is
x̂ = (0, 1)T the modified vector pointing to the optimum o would be

o = ((xopt − x̂)⊗∇z(x̂))
T
= (20/11 − 0, 4)

T
= (20/11, 4)

T
, because the first

order derivative with respect to x2 is four independent of the value of x2.
Thereby, the operator ⊗ denotes the choosing of an element either from its
left or right side of the operator depending on a finite value on the left.
If (xopt − x̂) is finite, this value is taken, otherwise the gradient value. We
assume that the convergence is slightly better than an approach only based
on the gradient, because—depending on the coefficients of the quadratic
variables—the convergence for single variables is better. But for a sound
statement further studies are necessary, which are out of the scope of this
work.

For the illustrative example the unconstrained optimum is found with
either method in five iterations (see Table 3.17). The optimal solution is

(21/11, 241/220)
T
and the numerically found solutions are within a tolerance

of 5 · 10−10. The closest solution is the one found by option three (tolerance
of 9 · 10−16), but this could be by chance. The visualisation of the problem
and the solution path are depicted in Fig. 3.22.



3.3 Piecewise linear price-quantity dependencies 91

Table 3.17 Iterative solution points of illustrative example with mixed variables

iteration solution iteration solution iteration solution

0 (0, 0) 2 (0, 1) 4 (1.8182, 1.0909)
1 (4, 1) 3 (1.8182, 1) 5 (1.9091, 1.0955)

The values are rounded to four digits. Values with less than four post decimal digits
indicate an exact value without rounding being necessary.
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Fig. 3.22 Illustration of (QLLP) example

A special case of variables are the variables with the coefficient zero.
These variables do not distribute to the objective function at all. Thus, any
value of such a variable is an optimal value, as long as the problem is feasible.
These variables need no special treatment, because in the algorithm steps
they are automatically handled with when solving a LP or MIQLP. This
is also true for problems containing only quadratic variables and variables
with zero coefficients.
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3.3.3.5 Adaptation to integer problems

So far we have considered the domain of real numbers. When we restrict the
problem further to a problem with integrality constraints, we get a so-called
pure integer problem, i.e., only integral variables exist, or a mixed integer
problem, i.e., integral and real valued variables exist. This also requires an
adaptation of the presented solution algorithm. The first adaptation is the
determination of the unconstrained integral optimum. This is easily possible
for concave quadratic functions without mixed quadratic terms, which is
the case for the problems in disassembly planning that we consider. The
quadratic functions are symmetric with the axis of symmetry being the
maximum (see appendix B.6). Therefore, only the absolute distance to the
optimum xopt is relevant. Hence, whatever integral value is closer to xopt

is the integral optimal solution. Thereby, the integral solution is found by
rounding. Note that in the case of equidistance both integral values are
optimal. For example, if xopt = 3/2, the values xint

opt = 1 and xint
opt = 2 are

both optimal, because they both have the highest (identical) function value.
Applying this to an n-dimensional problem up to 2n optimal values can exist
where there is only one optimal value in the domain of real numbers.

If one of these optima is feasible the optimal integral solution is found
without using a solver software. (Note that for problems with linear vari-
ables the unconstrained optimum does not exist, see Sect. 3.3.3.4, which
makes the determination of the constrained real optimum the first step.)
Otherwise, the constrained optimum of the domain of real numbers is de-
termined. Having this solution we assume that the integral optimum is in the
neighbourhood, i.e., within the same section combination. Thus, a MIQLP
is formulated which uses an objective function that is only based on the
objective functions of the actual section combination. This way we try to
keep the necessary solver runs with MIQLP (and MILP) low, because integer
solving takes usually more time than LP solving. Solving the MIQLP shows,
whether the problem is feasible or not. If it is feasible it also delivers a first
integral solution. To find the optimal integral solution the above mentioned
algorithms could possibly be modified, but this would include several MILP
solvings and, furthermore, the handling of an assisting constraint needs to
be modified, because a restriction to the hyperplane as in the QLP solving
will most likely omit many relevant integral solutions. Therefore, a different
procedure is preferred, that follows the considerations to find the uncon-
strained optimum with section borders present (see Sect. 3.3.3.3 and here
especially Fig. 3.18 and 3.19).

For a better understanding Fig. 3.23 illustrates the following discussion.
Depicted are four areas I through IV, which represent the four section com-
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III

III IV

Partially defined objective function

III

III IV

Objective function of section combination I

III

III IV

Objective function of section combination III

III

III IV

Objective function of section combination IV

Fig. 3.23 Objective functions and solution space for the section combinations

binations. The section borders are marked by the vertical and horizontal
dashed lines. The grid of grey dots indicates the integral solution values.
The two constraints (solid black straight lines) limit the feasible solution
space to the section combinations I, III, and IV. In the upper left part of
the figure we see several levels of the partially defined objective function
with the jumping first order derivatives at the section borders. The “⊕”
indicates the optimum in the domain of real numbers in all four parts of the
figure.

The optimal real valued solution is situated within the section combi-
nation IV. Thus, only the objective function of this section combination is
used for the first MIQLP solving. The objective function is also set valid for
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all other sections. This means that no constraints are added to restrict the
solution to the focussed section. If the integral solution is situated within
the section combination, the optimal integral solution is found. The objec-
tive function of the section combination used for the MIQLP is correct for
the actual section combination and overestimates the objective function of
the other sections (see appendix B.4). So if the optimal integral solution
is within the section combination, all other integral solutions especially of
neighbouring sections have a lower value. And this lower value is even over-
estimated by the actual section combination objective function, such that
the correct objective value (corresponding to the section) is even lower and
can therefore not be better than the optimal one that is found. Note that the
variables are independent of each other, i.e., a change of a value of decision
variable one does not lead to a change of a value of variable two regarding
the objective value.

If the integral solution is not within the section combination we used the
objective function of, further steps are necessary. As depicted in the lower
right part of Fig. 3.23 the integral solution is outside the section combina-
tion. Here, the integral solution “•” is in section combination III instead
of IV. Repeating the procedure (i.e., solving a MIQLP) with the objective
function of the section combination III leads to the integral solution in sec-
tion combination I (lower left part). Repeating it with the objective function
of section combination I results in the known solution in section combina-
tion III (see upper right part in the figure). In order to find the optimal
integral solution an objective comparison needs to be applied. Thereby, all
section combinations that are part of the oscillating solutions and the ones
that are between these are compared.

For each participating section combination the corresponding objective
function is used. In addition, this time the section borders are added as
additional constraints to limit the integral solution to the corresponding
section combination. For each participating section combination a MIQLP
is solved and the results are compared afterwards. The optimal integral
solution of each section combination (I, III, and IV) is marked with “×”
in the corresponding part of the figure. The best of these three solutions is
chosen and represented by the “×” in the upper left part of Fig. 3.23. Note
that there might be section combinations without an integral solution, like
section combination II. When it comes to the comparison the MIQLP solver
needs to be run several times which is surely not the fastest way of solving
the problem, but we can use standard solvers like GUROBI. In the worst
case the solution finding results in a complete enumeration of all section
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Formulate MIQLP
x0 := 0

i := 1

Determine unconstrained
xopt & xint

opt

∗

xint
opt feasible?

no

yes
∗

Optimum xint
opt

xopt feasible?

no

yes
∗

Determine constrained
xopt

Feasible?

yes

no

Update MIQLP
j := section of xopt

obj. := zj (x)

MIQLP infeasible

Solve MIQLP
→ xi

Feasible?

yes

no

xi in section j?

no

yes
xint
opt := xi

i := i+ 1

Update MIQLP
j := section of xi−1

obj. := zj(x)

Solve MIQLP
→ xi

xi in section j?

no

yes
xint
opt := xi

yes

noxi ∈ {xl|
l = 0, ..., i− 2}

Objective comparison of
all integral solutions of
all section combinations

with their section
borders as constraints of
the cycle and the ones in

between
→ xint

opt

∗ . . . not with linear variables

Fig. 3.24 Flowchart of finding the optimal integral solution(s)

combinations.37 We expect that in most cases the solution is found with
just one MIQLP solving. The flowchart is depicted in Fig. 3.24.

A modification of the above used example shall be used to illustrate the
algorithm. The modification is necessary, because the unconstrained optimal

37 Of course, sections where the real valued optimum is lower than an already found
integral solution can be excluded from the enumeration.
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integral solution is feasible and therefore not the best choice to illustrate the
algorithm. For the (MIQLP) the objective function and the section borders
are taken from above (see Eq. (3.81)).

(MIQLP): Maximise z =

⎛⎜⎝
⎧⎪⎨⎪⎩
−x2

1 x1 ≤ 1

− 11
10 x

2
1 +

1
10 1 < x1 ≤ 2

− 6
5 x

2
1 +

1
2 2 < x1

⎞⎟⎠

+

⎛⎜⎝
⎧⎪⎨⎪⎩
−x2

2 x2 ≤ 1
2

− 11
10 x

2
2 +

1
40

1
2 < x2 ≤ 3

2

− 6
5 x

2
2 +

1
4

3
2 < x2

⎞⎟⎠
− 3

2
x1 x2 + 4x1 + 4x2 + 12 (3.102)

The constraints are modified to

s.t. 2x1 + 5x2 ≥ 5 (3.103)

2x1 − 3x2 ≤ 5 (3.104)

−2x1 + 10x2 ≤ 5 (3.105)

x1 + 20x2 ≤ 24 (3.106)

x1, x2 ∈ Z . (3.107)

The problem is depicted in Fig. 3.25. According to the presented algorithm,
the optimal unconstrained real valued and integral shall be determined.
These are xopt = (40/37, 40/37)

T
and xint

opt = (1, 1)
T
, respectively. Both are

infeasible so that the constrained real valued optimum needs to be deter-
mined. According to the earlier presented algorithm (see Fig. 3.15) a feasi-

ble solution of xopt = (1915/1444, 1105/1444)
T
is found. This solution is located

within the section combination “B II”. The corresponding objective function
is

zB II(x) = −11

10
x2
1 −

11

10
x2
2 −

3

2
x1 x2 + 4x1 + 4x2 +

97

8
(3.108)

(see Eq. (3.89)). Solving the MIQLP with this objective and the constraints
of (MIQLP) results in the integral solution (3, 1)T. This solution is not in
section combination “B II” anymore. This solution appears the first time.
Hence, the objective function is updated with the corresponding section
combination “C II”.

zC II(x) = −6

5
x2
1 −

11

10
x2
2 −

3

2
x1 x2 + 4x1 + 4x2 +

501

40
(3.109)
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Fig. 3.25 Illustration of (MIQLP) example

Solving this MIQLP results in the solution (3, 1)T, which is within the sec-

tion “C II”. Thus, the integral optimum is found with xint
opt = (3, 1)

T
.

3.3.4 Numerical example

After developing the finding of the optimal solution of a quadratic optimisa-
tion problem with a piecewise defined concave objective function and linear
constraints it shall be applied to the disassembly planning problem moti-
vated in Sect. 3.3.1. Other than in Sect. 3.3.2, the section variables (e.g.,
QI

es) are not used in the sequel, because the developed solution finding is
based on a partially defined objective function.38

The objective function consists of

R =
∑
e

rIe(Q
I
e)Q

I
e +

∑
r

rRr (Q
R
r )Q

R
r (3.110)

38 The section variables are necessary for solvers that do not support partially defined
objective functions.
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Table 3.18 Data for the piecewise linear price-quantity dependent function

c c̄Ac ĉAc,1 ĉAc,2 Q̌C
c,1 e r̄Ie r̂Ie,1 r̂Ie,2 r̂Ie,3 Q̌I

e,1 Q̌I
e,2

1 2,220 2.2 2.4 50 1 31 −0.004 - - - -
2 2,095 2.7 2.9 80 2 300 0 - - - -
3 2,830 2.8 3.1 50 3 2,500 −0.49 −0.55 −0.6 100 200

r r̄Rr r̂Rr,1 r̂Rr,2 Q̌R
r,1 d c̄Dd ĉDd,1 ĉDd,2 Q̌D

d,1

1 1.43 0 −0.0000014 50,000 1 0.2 0 0.0000002 50.000
2 1.00 0 −0.0000009 50,000 2 0.4 0.0000004 0.0000006 10.000
3 0.75 0 −0.0000007 50,000
4 0.45 0 - -

and
C =

∑
c

(
cJc + cAc (Q

C
c )
)
QC

c +
∑
d

cDd (Q
D
d )Q

D
d (3.111)

with, for instance, rIe(Q
I
e) being

rIe(Q
I
e) =

⎧⎪⎨⎪⎩
r̄Ie + r̂Ie,1 Q

I
e 0≤QI

e≤Q̌I
e,1

r̄Ie +
∑s

t=2

(
r̂Ie,t−1 − r̂Iet

)
Q̌I

e,t−1 + r̂Ies Q̌
I
e Q̌I

e,s−1<QI
e≤Q̌I

es

r̄Ie +
∑S

t=2

(
r̂Ie,t−1 − r̂Iet

)
Q̌I

e,t−1 + r̂IeS Q̌I
e Q̌I

e,S−1<QI
e

.

(3.112)
According to the data given in Table 3.18 the price and cost functions are:

rI1(Q
I
1) = 31− 0.004QI

1 (3.113)

rI2(Q
I
2) = 300 (3.114)

rI3(Q
I
3) =

⎧⎪⎨⎪⎩
2500− 0.49QI

3 0 ≤ QI
3 ≤ 100

2506− 0.55QI
3 100 < QI

3 ≤ 200

2516− 0.6QI
3 200 < QI

3

(3.115)

rR1 (Q
R
1 ) =

{
1.43 0 ≤ QR

1 ≤ 50000

1.5− 0.0000014QR
1 50000 < QR

1

(3.116)

rR2 (Q
R
2 ) =

{
1 0 ≤ QR

2 ≤ 50000

1.045− 0.0000009QR
2 50000 < QR

2

(3.117)

rR3 (Q
R
3 ) =

{
0.75 0 ≤ QR

3 ≤ 50000

0.785− 0.0000007QR
3 50000 < QR

3

(3.118)

rR4 (Q
R
4 ) = 0.45 (3.119)
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cA1 (Q
C
1 ) =

{
2220 + 2.2QC

1 0 ≤ QC
1 ≤ 50

2210 + 2.4QC
1 50 < QC

1

(3.120)

cA2 (Q
C
2 ) =

{
2095 + 2.7QC

2 0 ≤ QC
2 ≤ 80

2079 + 2.9QC
2 80 < QC

2

(3.121)

cA3 (Q
C
3 ) =

{
2830 + 2.8QC

3 0 ≤ QC
3 ≤ 50

2815 + 3.1QC
3 50 < QC

3

(3.122)

cD1 (Q
D
1 ) =

{
0.2 0 ≤ QD

1 ≤ 50000

0.19 + 0.0000002QD
1 50000 < QD

1

(3.123)

cD2 (Q
D
2 ) =

{
0.4 + 0.0000004QD

2 0 ≤ QD
2 ≤ 10000

0.398 + 0.0000006QD
2 10000 < QD

2

. (3.124)

With these parts the functions for revenues R and cost C can be formulated.

R =
(
31− 0.004QI

1

)
QI

1 + 300QI
2

+

⎛⎜⎝
⎧⎪⎨⎪⎩
2500− 0.49QI

3 0 ≤ QI
3 ≤ 100

2506− 0.55QI
3 100 < QI

3 ≤ 200

2516− 0.6QI
3 200 < QI

3

⎞⎟⎠QI
3

+

({
1.43 0 ≤ QR

1 ≤ 50000

1.5− 0.0000014QR
1 50000 < QR

1

)
QR

1

+

({
1 0 ≤ QR

2 ≤ 50000

1.045− 0.0000009QR
2 50000 < QR

2

)
QR

2

+

({
0.75 0 ≤ QR

3 ≤ 50000

0.785− 0.0000007QR
3 50000 < QR

3

)
QR

3 + 0.45QR
4

(3.125)

C =

(
300 +

{
2220 + 2.2QC

1 0 ≤ QC
1 ≤ 50

2210 + 2.4QC
1 50 < QC

1

)
QC

1

+

(
280 +

{
2095 + 2.7QC

2 0 ≤ QC
2 ≤ 80

2079 + 2.9QC
2 80 < QC

2

)
QC

2

+

(
260 +

{
2830 + 2.8QC

3 0 ≤ QC
3 ≤ 50

2815 + 3.1QC
3 50 < QC

3

)
QC

3
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+

({
0.2 0 ≤ QD

1 ≤ 50000

0.19 + 0.0000002QD
1 50000 < QD

1

)
QD

1

+

({
0.4 + 0.0000004QD

2 0 ≤ QD
2 ≤ 10000

0.398 + 0.0000006QD
2 10000 < QD

2

)
QD

2 (3.126)

The constraints are unchanged and given in Sect. 3.1.
Generally, the solution finding follows the four steps:

1. determine the unconstrained real and integral optimum,
2. check for feasibility of the unconstrained real and integral optimum,
3. determine the constrained real optimum, and
4. determine the constrained integral optimum.

Since the model not only contains quadratic variables in the objective func-
tion, but also linear ones (e.g., the variable QI

2 is linear, whereas QI
1 is

quadratic) the first two steps are skipped (see Sect. 3.3.3.4). Hence, we
start with the third step. In this step the constrained real valued optimum
is determined. For this we can choose between the three given options (see
Sect. 3.3.3.4). As we will see, it does not matter which option we choose, be-
cause the determination of the constrained optimum stops before an option
specific part starts.

According to the algorithm steps in Fig. 3.14, a LP is created that con-
tains the constraints of the quadratic problem and uses the gradient of an
arbitrary solution for the objective function. As arbitrary solution we take
vector x = 0. That means that all decision variables (i.e., the Q as well as
X) are summarised to this vector x (see Eqs. (3.23) and (3.24)).

x =
(
QI

1..3, Q
R
1..4, Q

C
1..3, Q

D
1..2, X

I
1..3,A..H, X

R
1..3,A..H,1..4, X

D
1..3,A..H,1..2

)T
(3.127)

The resulting gradient of the objective function P at x = 0 is

∇P (x) = (31, 300, 2500, 1.43, 1, 0.75, 0.45,

−2520,−2375,−3090,−0.2,−0.4, 0 . . . 0)
T
. (3.128)

Solving the LP, results in a feasible solution. The coefficients of the objec-
tive function are updated with the gradient at the actual solution and the
LP is solved again. This is repeated until after three iterations a cycle is de-
tected. This causes to continue the solution algorithm according to Fig. 3.14
on the right side. After six further iterations the optimal solution is found.
The solution is depicted in Table 3.19. The objective values of the itera-
tions in chronological order are 4,170.27, −15,634.66, 12,728.13, 14,051.11,
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Table 3.19 Real valued optimal solution of the PLPCF model

variables representing the interfaces

QC
1 30 QI

1 175.37 QR
1 35,741.47 QR

4 0
QC

2 139.86 QI
2 168.16 QR

2 58,958.09 QD
1 1.32

QC
3 25 QI

3 163.21 QR
3 0 QD

2 6,000

variables

XI
ci XR

cir XD
cid

r = 1 r = 2 r = 3 r = 4 d = 1 d = 2
c c c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13.5 62.94 11.25 16.5 76.92 13.75 . . . . . . . . . . . . . . .
B 13.5 62.94 11.25 16.5 76.92 13.75 . . . . . . . . . . . . . . .
C . . . 29.96 139.86 24.96 . . . . . . . . . 0.05 . 0.04 . . .
D . . . 29.96 139.86 24.96 . . . . . . . . . 0.05 . 0.04 . . .
E 29.7 138.46 . . . . 0.3 1.40 25 . . . . . . . . . . . .
F . . . 30 135.83 0.11 . 4.03 24.89 . . . . . . . . . . . .
G . 138.46 24.75 0.71 . . 29.29 1.40 0.25 . . . . . . . . . . . .
H . . . . . . . 139.86 25 . . . . . . . . . 30 . .

A dot denotes a value of zero. Values are rounded to two digits. Values with less than
two post decimal digits indicate an exact value without rounding being necessary.

14,060.44, 14,061.77, and lastly the optimal objective of P = 14,061.82e.
According to the MILP solving (see Fig. 3.24), the objective function of the
MIQLP is set to the one of the section the real valued optimum is in. The
relevant sections are:

0 ≤ QC
1 ≤ 50 80 < QC

2 0 ≤ QC
3 ≤ 50 (3.129)

100 < QI
3 ≤ 200 (3.130)

0 ≤ QR
1 ≤ 50000 50000 < QR

2 0 ≤ QR
3 ≤ 50000 (3.131)

0 ≤ QD
1 ≤ 50000 0 ≤ QD

2 ≤ 10000 . (3.132)

The objective function for this section combination is derived from Eqs.
(3.125) and (3.126).

R =
(
31− 0.004QI

1

)
QI

1 + 300QI
2 +

(
2506− 0.55QI

3

)
QI

3

+ 1.43QR
1 +

(
1.045− 0.0000009QR

2

)
QR

2 + 0.75QR
3 + 0.45QR

4 (3.133)
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Table 3.20 Integral optimal solution of the PLPCF model

variables representing the interfaces

QC
1 30 QI

1 178 QR
1 36,360 QR

4 0
QC

2 145 QI
2 172 QR

2 60,970 QD
1 32

QC
3 25 QI

3 167 QR
3 460 QD

2 6,000

integral variables

XI
ci XR

cir XD
cid

r = 1 r = 2 r = 3 r = 4 d = 1 d = 2
c c c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 65 11 1 74 14 . . . 16 6 . . . . . . . . . .
B 13 65 11 1 80 14 . . . 16 . . . . . . . . . . .
C . . . 29 145 24 . . . . . . . . . 1 . 1 . . .
D . . . 29 139 24 . . . . 6 . . . . 1 . 1 . . .
E 29 143 . . . . 1 2 25 . . . . . . . . . . . .
F . . . 20 127 23 10 18 2 . . . . . . . . . . . .
G . 143 24 . . 1 30 2 . . . . . . . . . . . . .
H . . . . . . . 145 25 . . . . . . . . . 30 . .

A dot denotes a value of zero.

C =
(
2520 + 2.2QC

1

)
QC

1 +
(
2359 + 2.9QC

2

)
QC

2 +
(
3090 + 2.8QC

3

)
QC

3

+ 0.2QD
1 +

(
0.4 + 0.0000004QD

2

)
QD

2 (3.134)

Solving the MIQLP—without forcing the variables to stay within the cor-
responding sections—results in a feasible solution listed in Table 3.20. This
solution is located within the same section combination as the used objec-
tive function and thus the solution is the optimal integral one. The objective
is P = 10,833.86e, which is a significant decrease of 23% compared to the
real valued optimum. In addition, we see that the integral solution cannot
be gained by just rounding the real valued optimum.

3.3.5 Summary

In this section we extended the model by the application of piecewise linear
quantity-price functions to have a little bit more flexibility in the usage
compared to just linear dependencies. We showed that the resulting partially
defined quadratic objective function is concave, which is a key property for
finding the maximum. In addition, we not only developed a theoretical way



3.4 Rolling horizon disassembly planning 103

of solving the problem (i.e., modified gradient projection method by Rosen,
see appendix B.5), but also an algorithm to solve the problem to optimum
with standard solvers. This is a major benefit, because any MIQLP solver
can be used—whatever is licensed—and we do not have to implement some
individual solving software—facing the problems of numerical solving and
over-determined problems—with rather poor performance. Furthermore, if
only a real valued optimum is desired, just a linear solver is needed, e.g.,
the one in the lpSolveAPI package of the R-project.39

3.4 Rolling horizon disassembly planning

3.4.1 Motivation

So far the focus was on a static consideration of disassembly planning. De-
pending on the level of aggregation and the actual situation this is the
adequate approach to find the best solution for a planning problem. But
sometimes it is necessary to include a further dimension: the time. Doing
so, appearing temporary differences in the supply, demand, capacity, etc.
can be included in the planning of the optimal disassembly process. When
an increasing demand for certain items is expected or known for a future
period, it might be necessary to change the ordering and/or the disassem-
bly process in order to make it possible to accommodate the demand or to
do it in an optimal way. The temporary change, e.g., of the demand, has
therefore influence on preceding and succeeding periods.

Basic planning of the multi-period disassembly can be found in the lit-
erature.40 But these basic approaches need to be extended in order to be
usable for the operational and/or tactical planning of the companies. Be-
sides the quantities of cores and items, the profit as objective, contracting
aspects, quantity limits, material recycling, disposal, etc. are facets to incor-
porate. In addition, the models are deterministic, which is a benefit for the
acceptance by companies. But the multi-period disassembly planning in the
literature requires relevant data for all periods to do the planning. We find
that an approach—still deterministic—that incorporates uncertain informa-

39 lp solve/Konis (2011): lpSolveAPI together with R Development Core Team
(2011): R-project .
40 Cf.Gupta/Taleb (1994): Scheduling disassembly, Taleb/Gupta (1997): Disassembly
of multiple products, and Taleb/Gupta/Brennan (1997): Disassembly with parts and
materials commonality.
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tion with the advantage of increasing the time horizon is more beneficial for
the planning. This is presented in the sequel.

The scenario we concentrate on is as follows. The company in focus needs
to fix the disassembly plan for the upcoming period. Of course, the past
periods are already planned and the results of the planning as well as the
realisation are known. The actual period is also already planned, but not
finally realised yet. This is a first uncertainty,41 whether the disassembly
is realised as planned or not. In the sequel we will assume the realisation
follows the plan, i.e., no backlogging and no exceeding the target occurs.
For the upcoming period (the one to be planned) all relevant data is known,
which makes a planning possible. For all further periods in the future not
all information exists yet and the further in the future the less information
exists. This also includes that the further in the future the less accurate
information we can get. Still, the company has some means of forecasting
including educated guessing. And this information cannot be ignored for
planning the upcoming period.42

Problems like this bring the dynamic economic lot size model by Wag-
ner/Whitin and its numerous extensions to mind.43 But a different and
more straightforward approach that represents the characteristics of the
on-going business and its planning situations is the rolling horizon plan-
ning. Wenning indicates the rolling horizon planning as a very responsive
method for dynamic problems.44 As explained above, the upcoming period
is planned with some forecast information and as the time goes on the next
period is to be planned. This proceeds infinitely because we assume that the
business is also aimed to continue forever.45 But at the moment of planning
we do not have the information for all (infinitely many) future periods. Thus,
a finite horizon planning is to be applied. And in this case the rolling hori-
zon planning that is approximately optimal for a finite horizon outperforms
dynamic lot size planning.46

41 The kind of uncertainty we consider can be categorised as environmental uncertainty
(in comparison to system uncertainty), because the uncertainty is beyond the disassembly
process. Cf. Mula et al. (2006): Models for production planning under uncertainty: A
review , p. 271.
42 Cf. Dawande et al. (2007): Forecast horizons, p. 688.
43 Cf. Wagner/Whitin (1958): Economic lot size model .
44 Cf. Wenning (2010): Context-based routing , p. 17.
45 Of course, one could argument, that on average a business in its current form only
continues some years, e.g., 100, which is definitely not infinitely. But for our considerations
an infinitely on-going business is assumed.
46 Cf. Wagner (2004): Comments on dynamic lot size model , p. 1776.
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When taking a look at the planning problem, a key element of it is the
horizon up to which period information is considered. In the literature sev-
eral horizon types are differentiated. Firstly, the planning problems are cat-
egorised into finite and infinite horizon problems.47 Our planning problem
can be seen as infinite horizon problem (see above). On the other hand, the
planning for the upcoming period is a finite horizon planning and the end of
the periods up to which information is incorporated in the planning of the
upcoming period is called study horizon. Thereby, the study horizon (i.e.,
the number of periods ahead) can be constant or can change from period
to period. Either way, the length of the horizon needs to be determined.

In general, the longer the horizon the better for finding the optimal plan.
But the horizon does not have to be infinitely long. The so-called forecast
horizon denotes the limit of periods to consider. It is defined as minimum
number of periods T (used in the planning) where an inclusion of the next
period T +1 does not change the optimal solution of the planning with only
T periods included. For the determination of this horizon several things are
to consider. The main trade-off is the cost of forecasting and the uncertainty
within the forecast. For example, Sethi/Sorger as well as Dawande et al.
discuss finding the optimal forecast horizon length for different planning
problems.48 A literature overview over diverse planning horizons can be
found in the work by Chand/Ning Hsu/Sethi.49 In addition, another
trade-off to consider is the solving. In general, it is assumed that the longer
the horizon the more complex the solution finding, because more variables
need to be determined.

Nevertheless, with time varying data only suboptimal solutions can be
generated. To give an example, we assume a planning of the upcoming
period with a study horizon of four periods. (The first period of the study
horizon is the upcoming period.) The data for the four periods might be 10,
11, 12, and 13. Considering this data the optimal solution of the upcoming
period regarding the study horizon is determined. Now, the “rolling” of the
horizon takes place, i.e., the next period to be planned is the one after the
upcoming period. Because of uncertainty the data changes (the 10 stays
fixed) and further data for another period needs to be included. The data
relevant for the succeeding planning may be 9, 14, 12, and 15. This means
the values 11, 12, and 13 changed to 9, 14, and 12, respectively. Under this

47 Cf. here and in the sequel Chand/Ning Hsu/Sethi (2002): Forecast, solution, and
rolling horizons, pp. 26–35.
48 Cf. Sethi/Sorger (1991): Rolling horizon decision making andDawande et al. (2007):
Forecast horizons.
49 Cf. Chand/Ning Hsu/Sethi (2002): Forecast, solution, and rolling horizons.



106 3 Complete disassembly planning

in-
coming
storage

cores
disassembly
process

distri-
bution
storage

items

material

waste

hazardous

Fig. 3.26 Research focus

condition the solution of the first planning might prevent a better solution
of the succeeding planning compared to the case of the planning of the first
period with the later known data 10, 9, 14, and 12. Therefore, the planning
is comparable to heuristics. Hence, it is assumed to be sufficient to include
as many periods in the study horizon as the decision maker thinks necessary
for a (very) good solution with respect to the forecasting effort, uncertainty,
and solving complexity.50

The rolling planning is a deterministic planning that still incorporates
uncertainty. Compared to stochastic planning the deterministic planning
with linear programming is more accepted by practitioners.51 Thus, we fo-
cus on the deterministic planning. Even though the data is assumed to be
deterministic, it changes and might not exist for certain demand or supply
values so that a forecast is necessary. This leaves us with the question of
how to forecast, achieve some steadiness, and assure feasibility of the fu-
ture planning from any given state. To apply the dynamic planning52 we
must assure that—independent of the already planned periods—there al-
ways exists a feasible solution for the study horizon. But before we discuss
the details let us take a look at the planning problem.

3.4.2 Problem description

The general structure of the planning problem is depicted in Fig. 3.26. Cores
(recovered products) are acquired and stored in the incoming storage. When

50 Nonetheless, the decision maker can still determine the optimal study horizon, whose
length might differ from period to period, but practitioners prefer a constant study hori-
zon. Cf. Chand/Ning Hsu/Sethi (2002): Forecast, solution, and rolling horizons, p. 36.
51 Cf. Dawande et al. (2007): Forecast horizons, p. 697.
52 Note that dynamic planning and dynamic programming are no synonyms.
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the disassembly process is scheduled, the cores are taken out of the storage
and are disassembled completely. After disassembling the gained items are
stored in the distribution storage. A smaller part of the storage can be
used for hazardous waste (i.e., hazardous items). This is symbolised by the
hatched triangle in the figure. Even though hazardous waste can only be
stored in this part all other items and material (i.e., non-hazardous) can
also be stored in the hazardous section.

The disassembling always results in items. These can be items in its literal
meaning, i.e., the smallest single piece a product consists of, or abstract
items for the planning, i.e., modules. If an item—one where the value added
is of interest—is distributed or planned for distribution (i.e., stocked), we
denote it as item. These might be demanded for reuse, refurbish, etc. and
are handled piecewise. When the value added is not of interest, only the
pure material value is relevant. Thus, these items can be sold for their
material value and are distributed to material recycling. These items we
call material. Items which are not distributable are disposed of. Here we
distinguish between (normal or regular) waste and the disposal of hazardous
waste. The latter three categories are handled in weight units.

In the sequel we again consider multiple cores and a multi-period plan-
ning. The integration of multiple periods leads to a dynamic planning which
requires the incorporation of inventory. The properties from procuring the
cores until the distribution of items and material as well as the disposal are
explained in the following.

Procuring Cores

The company acquires cores. This includes arranging contracts with sup-
pliers in advance. The contracting minders the uncertainties usually con-
nected with core acquisition.53 The acquisition generates cost (e.g., trans-
port, labour, and price for cores). When the negotiated number of cores
is not recovered by the company a contractual penalty must be paid.54 In
addition, the company guarantees a certain percentage (guarantee level) of
cores to be recovered, e.g., 90% of the contracted quantities. In addition,
the guarantee level realises a given minimal quantity of cores to be disassem-
bled by legal enforcement. A guarantee level of 90% means that contractual
penalty must be paid for up to 10% of the negotiated cores. The price for
the cores and other cost might vary from period to period. We assume that

53 Cf. Mukherjee/Mondal (2009): Issues relating to remanufacturing , p. 643.
54 We do not consider backlogging, but this could also be integrated in our approach.
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the guarantee level does not change over time. Nevertheless, the level is
specific for every type of core. Thereby, the level of core 1 could be 90%
and that of core 2 85%.

In the determined period the cores are transported to the facility and
stored in the limited storage for incoming cores. This might be an outdoor
storage. The storing of the cores induces inventory holding cost. Thereby, a
fixed unit cost for each core is assumed.

Disassembly Process

We further assume, the disassembling of the cores is done mostly manually
and not interrupted once it is started.55 We further neglect learning curve
effects or the like. Thus, the disassembling unit cost per core is fix. The
tools used to disassemble the different cores are similar if not identical so
that there is no difference whether two cores of the same type or a different
type are disassembled after another, i.e., the disassembly unit cost is not
sequence dependent. Additionally, there are no particular set-up actions,
which result in extra cost and labour. Thus, a specific inclusion of set-up
cost is not necessary. Furthermore, we assume that the disassembly lead
time does not change over time (no learning curve effect) for a given core.
Therefore, the cost for disassembly can be directly connected with the core,
when it is taken out of the storage and does not vary over time. An explicit
consideration of the disassembly lead time and a workload limit are not
applied.

On the contrary, the core conditions and the possible damaging during
the disassembly process are accounted for. We assume that the condition
and the damaging are significant for the disassembly process. This means,
that no differentiation takes place in the inventory. This again implies, that
the condition determines the number of items of a core to be used for the
corresponding distribution or disposal. And this determination is relevant
in the period the cores are disassembled. Hence, with respect to the core
condition the modelling is similar to the basic model.

The cores are completely disassembled. The items are stored on pallets
or trays, the material and the disposal in lattice boxes, and the hazardous
waste on special trays. All but the hazardous waste goes into the limited
distribution storage without a fix slot assignment. As mentioned above, the
hazardous waste can only be stored in a special section of the storage. Again,
all things in the storage induce inventory holding cost of a fixed rate.

55 Cf. Desai/Mital (2003): Evaluation of disassemblability, p. 267.
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Distribution

The distribution of items and material as well as the disposal is arranged
in advance. This means, that contracts are settled up to several periods
ahead and the quantities the company is confronted with are not random or
uninfluenced by the company. (For example, Kim/Xirouchakis assume a
random demand.56) Again, a violation of the contracted quantities causes
contractual penalties. Other than with cores, no minimum distribution limit
is guaranteed. This implies, that even though a contract over 100 items ex-
ists, no item has to be distributed. (Of course, the customer is compensated
in form of the contractual penalty.) We further assume that the contracted
quantities cannot be exceeded, i.e., the company cannot sell more than it
has contracted. The revenues for items are based on units and the one for
material as well as disposal and hazardous waste are based on the weight.
Here, no quantity dependencies exist and all customers are equal in terms
of the price. The contractual penalty is a given fraction of the price. The
transport of hazardous waste is contracted in advance, too. An example
could be that only every second or fourth period a transport is possible.
Other than that, the amount of hazardous waste is only limited by the cor-
responding storage capacity. The only entity not directly contracted is the
disposal. Every period disposal can take place to an unlimited amount.57

Even though the disposal is unlimited, the company is not unaware of the
quantities of disposal. The planning gives an estimation of how much shall
be disposed of in the next period, so that the quantities are moderately
known in advance and thus predictable.

The contracts with material recyclers do not only contain the amount
of material. They also include the purity requirements for each material
type. For example, a company could require a purity of 95% in the steel
box. This means that up to 5% impure material can be placed in that
box. To fulfil this constraint the material composition of all items relating
to the corresponding material type needs to be collected. For example, an
item consists of 95 g steel and 5 g plastics. Then the beneficial fraction of
the item for the material type steel is 95% and that for plastics is 5%.
Obviously, this item adheres to the constraint. The same would apply with
two items—one with 95 g of pure steel and one of 5 g of pure plastics. Both
items together make 100 g—95% steel and 5% plastics. For a single period
planning this was discussed in Sect. 3.1.2. With the extension of the planning
to several periods the question arises whether the additional dimension time

56 Cf. Kim/Xirouchakis (2010): Capacitated disassembly scheduling, p. 7179.
57 This assumption is caused by modelling as is explained in the sequel.
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has influence or not. At least six cases can be distinguished. The purity limit
holds

• for each distribution,
• on average over the study horizon,
• on average a fix number of periods into the past,
• on average over the complete history,
• on average a fix number of periods into the past plus the study horizon,

and
• on average over the complete history plus the study horizon.

In detail these cases are complicated to model, because one has to consider
inventory policies like first in first out, last in first out, lowest in first out, or
the like. This would mean another assumption for modelling is required and
to keep track of the value and timing of the items put into the storage. To
simplify the approach we do not take the time of distribution as reference
but the time of disassembling and adding to the storage.58 When storing the
items for material recycling in lattice boxes where the content of a box goes
to one recycling company, the decision of what goes to the recycling company
is made when adding the items to the box and not when distributing it to
the recycling company. Hence, the purity limit holds for adding to inventory

• in every period,
• on average over the study horizon,
• on average a fix number of periods into the past,
• on average over the complete history,
• on average a fix number of periods into the past plus the study horizon,

and
• on average over the complete history plus the study horizon.

The first case equals the one of the single period planning, because no
aggregation over periods appears. This is the strictest limitation. When
adding one or more periods where a purity violation of one period is levelled
out (by extra pure material) in another period, the degree of freedom for
the solution increases. This applies to case two. Assuming a study horizon
of five periods and an overall purity requirement of 95%, it is possible to
plan a 75% purity in the first period and 100% in the other four periods
of the horizon.59 When the horizon is rolled on to the next period the 75%
purity are realised, but are forgotten for the next planning. Thus, the same

58 For the sixth case it does not matter if the distribution or storing is used.
59 We assume for illustration that in each period the same quantity (i.e., weight) of
material is disassembled.
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planning might take place and in the end only 75% purity in each period
is achieved. This is not compliant with the requirement of the recycling
company and therefore the second case cannot be used in the planning.

In case three the decisions made are not forgotten, because a fixed num-
ber of periods (e.g., three) of the past are included in the planning of the
upcoming period. When remembering the past decisions an underrun of the
given purity limit is not possible. On the contrary, the company might lose
possibilities to distribute impure material. An example could be the follow-
ing. Assume that a company distributed 100% pure material to the recycling
company in the last four periods. When planning the current period (no fur-
ther inclusion of the study horizon) the company can distribute 80–100%
pure material to achieve an average of 95% over the past three and current
period. Considering the purity of all five periods (i.e., including the one pe-
riod far into the past) an average purity of 96–100% is reached, depending
on the planning of the current period with 80–100%. This shows that the
difference between the purity realisation (e.g., 100%) and the purity limit
(e.g., 95%) is “forgotten” if the corresponding period is out of the planning
focus (i.e., more than three periods ago). This is to the disadvantage of the
disassembly company. To avoid this “forgetting” the number of periods into
the past could be extended to the complete history, which equals the case
four. But, at least three reasons are against letting this happen.

The first reason is that the company knows about this “forgetting” of
pure material in the past and does not want to let it happen. Hence, the
company tries to stick as close as possible to the purity limit. Secondly, if we
assume disposal cost, less revenue if the impure material is put in another
box, and enough material to choose from (e.g., when cores only consist of
items with 100% of steel no impurity can occur) it is profitable to put as
many material (especially impure material) into the box with the highest
price (in order to get a higher revenue or avoid disposal cost). Hence, the
impurity requirement is always limiting this kind of behaviour and so a
purity level very close or exactly at the purity requirement is expected, in
general.

A third reason comes from the recycling company and can be summarised
as: what is the recycling company willing to contract. The recycling pro-
cess might require a particular purity or for economic reasons the recycling
process requires a certain purity level. Otherwise, the process cannot be
performed or it is too expensive, respectively. Either way the recycling com-
pany wants to assure a minimum purity in each period and would not be
satisfied with a scenario where five periods ago a high purity appeared and
(to balance the purity) in the current period the purity level is below the
minimum. In the light of the above, the recycling company might be willing
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to accept an average over very view (e.g., two or three) periods, having in
mind that the company itself tries to stick with the purity level (as discussed
in the first two reasons, but not over the complete past).

Theoretically, there is no difference between the cases one, three, and
four assuming the existence of appropriate material, disposal cost, etc. In
practice, i.e., depending on the data (e.g., the quantity of material is low,
the purity distribution is improper for perfect mixing of material to reach
the desired purity level, the demand changes in future periods such that the
inventory must be changed, etc.) both companies could agree on a small
number of periods to average the purity level.

The cases five and six have the study horizon added to the periods in the
past, which increases the freedom of adding impure material in the current
period. Several constellations with study horizon length (the period to be
planned is included in the study horizon, i.e., the minimum length is one)
and periods in the past are listed in Table 3.21. Thereby, the listing of purity
levels (given in per cent) demonstrates the worst case, i.e., the one with the
maximal underrun of the required purity level of 95%. We start with 100%
purity in the past. These values are realised and printed in black. The value
for the period to be planned is also printed in black, because this value is
also going to be realised. On the contrary, the grey numbers denote the
values of the study horizon that do not have to be realised. We start with
planning period one. The planning might result in the given solution (note,
always abstracted to the purity level assuming identical weights in every
period) of 60% purity in period one and 100% in periods two through five.
The past three periods (−2, −1, and 0) are included in the planning for
determining the purity average, but the values are fix. The average over
the eight values is 95%, which is exactly the required purity minimum. The
focus is then shifted to period two. For this period only one solution exists,
because of the value 60 in period one. To balance this seven times 100%
are necessary to achieve 95% on average. This continues further and the
solutions of the first six periods are displayed. The row “1–6” summarises
the realised values and lists the average purity over infinitely many periods
planned in this manner. The pattern for the first scenario is a repeating
group of the four values 60, 100, 100, and 100. The average of those is 90%.

When the study horizon is reduced by one (3 periods in the past and
4 periods study horizon) the minimal purity in period one increases by
5%, which equals the allowed impurity of 100 − 95%, in order to fulfill
the purity requirement for the planning. A further decrease of the study
horizon leads to a further increase of 5% per shortened period. If the study
horizon is only one period the results are these from case two, where the
purity requirement is not underrun. When changing the number of periods
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Table 3.21 Illustration of maximal underrun of purity requirement

periods in the past: 3; study horizon: 5; purity level: 95%
purity level

planning period average over

period −2 −1 0 1 2 3 4 5 6 7 8 9 10 past & study

1 100 100 100 60 100 100 100 100 95
2 100 100 60 100 100 100 100 100 95
3 100 60 100 100 100 100 100 100 95
4 60 100 100 100 100 100 100 100 95
5 100 100 100 60 100 100 100 100 95
6 100 100 60 100 100 100 100 100 95

1–6 100 100 100 60 100 100 100 60 100 90a

periods in the past: 3; study horizon: 4; purity level: 95%

purity level

planning period average over

period −2 −1 0 1 2 3 4 5 6 7 8 9 10 past & study

1 100 100 100 65 100 100 100 95
2 100 100 65 100 100 100 100 95
3 100 65 100 100 100 100 100 95
4 65 100 100 100 100 100 100 95
5 100 100 100 65 100 100 100 95
6 100 100 65 100 100 100 100 95

1–6 100 100 100 65 100 100 100 65 100 91.25a

periods in the past: 3; study horizon: 3; purity level: 95%

purity level

planning period average over

period −2 −1 0 1 2 3 4 5 6 7 8 9 10 past & study

1 100 100 100 70 100 100 95
2 100 100 70 100 100 100 95
3 100 70 100 100 100 100 95
4 70 100 100 100 100 100 95
5 100 100 100 70 100 100 95
6 100 100 70 100 100 100 95

1–6 100 100 100 70 100 100 100 70 100 92.5a

periods in the past: 3; study horizon: 2; purity level: 95%

purity level

planning period average over

period −2 −1 0 1 2 3 4 5 6 7 8 9 10 past & study

1 100 100 100 75 100 95
2 100 100 75 100 100 95
3 100 75 100 100 100 95
4 75 100 100 100 100 95
5 100 100 100 75 100 95
6 100 100 75 100 100 95

1–6 100 100 100 75 100 100 100 75 100 93.75a
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periods in the past: 2; study horizon: 3; purity level: 95%

purity level

planning period average over

period −2 −1 0 1 2 3 4 5 6 7 8 9 10 past & study

1 100 100 75 100 100 95
2 100 75 100 100 100 95
3 75 100 100 100 100 95
4 100 100 75 100 100 95
5 100 75 100 100 100 95
6 75 100 100 100 100 95

1–6 100 100 75 100 100 75 100 100 91 2/3a

periods in the past: 1; study horizon: 3; purity level: 95%

purity level

planning period average over

period −2 −1 0 1 2 3 4 5 6 7 8 9 10 past & study

1 100 80 100 100 95
2 80 100 100 100 95
3 100 80 100 100 95
4 80 100 100 100 95
5 100 80 100 100 95
6 80 100 100 100 95

1–6 100 80 100 80 100 80 100 90a

a This value represents the purity level on average over infinitely many periods.

in the past from three to two the repeating group is shortened by one to
three instead of four. In addition this leads to an increase of 5% to meet
the purity requirement per planning (see past periods: 3 and 2 with study
horizon: 3). From this we can derive a closed from expression that gives us
the maximal underrun ε of the required purity level for an infinite runtime.
This underrun depends on the study horizon length s, the number of periods
of the past p, and the purity level ω.

ε =
s− 1

p+ 1
(1− ω) (3.135)

The p+ 1 denotes the group length and s− 1 denotes the reduction of the
study horizon by the period to be planned.60 To give an example, the length
of the study horizon is four, three periods of the past are considered, and
the impurity level is 95%. The resulting maximal underrun is ε = 4−1

3+1 (1−
0.95) = 0.0375. This means that for endless repeating of this planning a

60 For a proof of the formula see appendix B.7.
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purity level of 95 − 3.75 = 91.25% is realised (see Table 3.21). According
to this regularity only three possibilities exist to achieve that the purity
requirement is always met, i.e., ε = 0. The first one is a study horizon of only
one period—this equals the one period planning and the cases where only
past periods are considered in the planning. The second one is the inclusion
of the complete history (p → ∞ with s being smaller than infinity) and
the third is a purity level of 100%. Following this, the only usefull action to
achieve no underrun of the purity is to choose a study horizon of length one,
because we explicitly want to consider impurity and the recycling company
does not bother with an realisation of infinitely many periods. Note that
the term study horizon s here only refers to the purity consideration and
not the overall planning.

To conclude this section, in the sequel we only consider the planning of
the upcoming period incorporating a limited number of past periods with
regard to the purity. This includes the special case of the one-period purity
planning, where the purity requirement has to be met every period. This
equals the cases one and three (see above). The inclusion of past periods
leads only to disadvantages for the disassembly company, which can decide
to what extent.

3.4.3 Planning considerations

3.4.3.1 General considerations

The following planning is mainly characterised by

• varying data over time,
• the possibility to appoint numbers of cores and items as well as amounts

of material in advance (by contracting), and
• a continuing business, i.e., there exists no finite planning horizon.

Thus, we favour a rolling horizon planning approach that includes a mod-
erate sized study horizon. The length of the study horizon should also in-
fluence the steadiness of the results. A short horizon might result in volatile
solutions and a long horizon in too steady solutions that prohibit the re-
alisation of better solutions by later varying data in the future. Thereby,
varying data does not mean that the values for the same matter in two
subsequent periods are different, e.g., core availability is 200 in period one
and 300 in period two. This is generally assumed in dynamic planning. It
rather means that a value changes from one planning to another. To stick
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with the core availability example, for the first planning the availabilities
are 200 and 300 for the two periods and for the next planning the values
might change to 220 and 250 for the same two periods. The longer the study
horizon the more likely the data is going to change.

For long study horizons the revenues and costs of future periods do not
have the same significance as for the upcoming period. Firstly, the data
of future periods might still change and secondly the present value for a
future value is usually lower. The latter aspect is assumed to be of marginal
influence, because of the relative short time frame of operational and tactical
planning. Still, the idea of the net present value for all revenues and cost is
a favourable approach for the planning presented here.

In rolling horizon planning infeasible solutions might result, because of
various reasons. One of them is the use of “hard” constraints, like the de-
mand.61 When according constraints exist, the planning and realisation of
solutions in earlier periods can lead to infeasibility in future periods. Avoid-
ing infeasibility is achieved by softening the constraints, e.g., setting lower
distribution limits for items and material when supply limits exist. (The
supply limits are the core availability, which equals the contracted number
of cores to be acquired, and the guaranteed level.) In addition, all items
can be disposed of, i.e., no upper disposal limit is given. Of course, only
as many items as contained in acquired cores over time can be disposed of.
Hence, an infinite quantity of disposal is a rather theoretical assumption.
Still, limits for disposal, e.g., for the hazardous waste, can be added, but
attention must be paid to enable an always feasible solution.

These “technically” motivated constraint relaxations do not influence the
relevance of the model or solution. Quite the contrary is the case depend-
ing on the point of view. One could argue that the degree of freedom of
economic decisions regarding the company can be as extensive as giving up
the business. Hence, the entrepreneur has to consider the trade-off between
giving up the business and disassembling cores. Whatever is favourable for
the entrepreneur should be his or her choice. Of course, the difficulty to
measure what is favourable is neglected here. Thus, as long as the decision
maker is able to associate a value to the relevant options the removing or
relaxing of quantity limits should not decrease but increase the freedom of
the decisions.

61 Cf. Al-Ameri/Shah/Papageorgiou (2008): Optimising a rolling horizon framework ,
p. 1034.
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Fig. 3.27 Inventory balance

3.4.3.2 Inventory and steady planning aspects

The inventory is a key component in dynamic planning. Other than just
taking the final inventory of a period to calculate the inventory holding
cost,62 we include the inventory development more precisely. Therefore, we
approximate the increase and decrease of the inventory during a period by
steps and linear functions. An example is given in Fig. 3.27. The inventory
of cores is replenished at the beginning of a period. The initial inventory of
core c and period t is denoted by V C

tc and the replenishing quantity by Q̃C
tc.

The disassembly process linearly decreases the inventory during the period
by the quantity QC

tc. Hence, at the end of the period the inventory equals

V C
tc + Q̃C

tc − QC
tc, which is identical with the initial inventory of the next

period V C
t+1,c. At the beginning of the next period the procedure repeats.

The basis for the calculation of the inventory holding cost for this period is
the area under the inventory curve, which equals the average inventory of
the period. The average inventory is calculated by

V C
t+1,c +

1

2
QC

tc = V C
tc + Q̃C

tc −
1

2
QC

tc . (3.136)

The same applies to the distribution stock with the difference that the
inventory is increased linearly and decreased in one step. The initial inven-
tory V I

te for a demanded item e is increased by the number of units coming
out of the disassembly process QI

te and decreased by the number of units

leaving the storage Q̃I
te. The average inventory equals

62 Cf. Kim et al. (2009): A branch and bound algorithm for disassembly scheduling .
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1

2
QI

te = V I
t+1,e + Q̃I

te −
1

2
QI

te . (3.137)

The inventory development and average calculation for material, waste, and
hazardous waste are analogue to the one of items.63

The initial inventory for a period is given and according to inflow and
outflow updated for the next period. At the end of the study horizon the
inventory does not have to be empty, because of an on-going business. De-
pending on the unit costs the solution of the model could tend to an in-
creased inventory towards the end of the study horizon to prevent, e.g.,
high disposal cost. This tendency might lead to an always too high inven-
tory and the planning of the next period needs to adjust this. The necessary
adjustments might be drastically. In order to avoid this behaviour, we as-
sume that the resulting inventory is stored infinitely. Therefore, we discount
the inventory holding like an infinite annuity with the above mentioned net
present value method.64

The infinite annuity is also applied to revenues and acquisition, disas-
sembly, and disposal cost. This is necessary to have a balance to the infinite
inventory holding cost. If only the revenues and cost of the last period of the
study horizon are taken as basis for the infinite annuity, the maximisation
of the profit will lead to a solution where the revenues are high and cost
are low in the last period of the study horizon. To avoid this, we take the
average of revenues and cost of the study horizon as basis for the infinite an-
nuity. These average revenues and cost symbolise the expected values for the
future periods of the continuing business. Another approach—not consid-
ered here—could be the usage of the stock turnover as adequate timeframe
instead of the infinite timeframe.

In the rolling planning attention needs to be paid to assure that a solution
of an earlier period might cause an infeasible solution of a future period.
This is necessary because the study horizon is not infinite, i.e., not all future
periods will be integrated in the planning of the current period—either
because of computation time for the solving or because not all information
is available yet. To avoid such infeasible situations, there always has to exist
a feasible solution given an arbitrary state of earlier periods. This follows
the practice, because a company can always find a feasible solution from
its current state, even if it is by selling the company (in the extreme case).
For the scenario considered here, it is sufficient to consider the disposal
option at any time and that the demand of items and material does not
have to be fulfilled. Of course, disposal and not fulfilling the demand lead to

63 Cf. Ullerich/Buscher (2010): Multi-period product recovery.
64 Cf. Eppen/Martin/Schrage (1989): A scenario approach to capacity planning .
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additional cost. If there still exists a constraint with the possibility of causing
an infeasible solution it must be guaranteed by the parameters that such a
situation does not occur. To give an example, we assume a storage capacity
of 100 units. The transport for emptying the storage takes place only every
fourth period. This means that on average 25 units can be processed per
period, i.e., put into the storage. If on average 30 cores are contracted in
each period and put into the storage no feasible solution can be gained.

3.4.3.3 Optimising the current period

The period to be optimised is denoted by τ . For this period the profit Pτ

is to be maximised. The profit is calculated by subtracting the acquisition,
disassembly, and disposal cost Cτ , the inventory holding cost CV

τ , and the
shortage cost CS

τ from the revenues Rτ .

Maximise Pτ = Rτ − Cτ − CV
τ − CS

τ (3.138)

The revenues can be gained by selling items or material. The number of
items sold is denoted by Q̃I

te and the price by rIte. The amount of material

distributed is denoted by Q̃R
tr and the price for a weight unit by rRtr. The

revenue of each period is discounted by z (0 < z < 1). Note that z is not
tied to an interest rate but rather a value used to achieve the same effect.
The study horizon length, the demand position, and the recycling box index
are denoted by τ̄ , e, and r, respectively. Hence, the revenues are

Rτ =

τ+τ̄−1∑
t=τ

(∑
e

rIteQ̃
I
te +

∑
r

rRtrQ̃
R
tr

)
zt−τ

+
zτ̄

τ̄(1− z)

τ+τ̄−1∑
t=τ

(∑
e

rIteQ̃
I
te +

∑
r

rRtrQ̃
R
tr

)

=
τ+τ̄−1∑
t=τ

(∑
e

rIteQ̃
I
te +

∑
r

rRtrQ̃
R
tr

)(
zt−τ +

zτ̄

τ̄(1− z)

)
. (3.139)

Note that the values Rt are not the revenues of the corresponding periods
alone. The revenues of the complete study horizon and the estimation for
the infinite horizon are included in the values. The term 1

1−z denotes the
factor to determine net present value of the infinite annuity of the average
revenues. And the average of the revenues is calculated by the division of
the sum of revenues over the study horizon divided by the study horizon
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length τ̄ . Furthermore, the infinite annuity starts in the period after the
study horizon to avoid double inclusion of the periods of the study horizon.
Therefore, the net present value of the infinite annuity is discounted by zτ̄ .
Hence, put together we get the factor zτ̄

τ̄(1−z) .

The core acquisition cost depend on the number of cores acquired Q̃C
tc

and the corresponding unit cost cAtc. The disassembly unit cost cJc multiplied
with the cores taken out of the ingoing inventory for processing QC

tc gives the
disassembly cost. The cost for disposal form the last term. The amounts of
regular waste to dispose of are expressed by Q̃D

t1 and the ones for hazardous

waste by Q̃D
t2, i.e., they are stored in bin d = 1 and d = 2, respectively.

The corresponding unit cost is cDtd. Again, the costs are discounted each
period and for a long-term estimation we use the average of the values of
the periods to optimise.

Cτ =

τ+τ̄−1∑
t=τ

(∑
c

(
cAtcQ̃

C
tc + cJcQ

C
tc

)
+
∑
d

cDtdQ̃
D
td

)(
zt−τ +

zτ̄

τ̄(1− z)

)
(3.140)

For calculating the inventory holding cost we assume the simplified pro-
gression as depicted in Fig. 3.27. The incoming inventory is characterised
by an immediate increase of the stock and a linear decrease, whereas the
outgoing inventory is characterised by a linear increase and an immediate
decrease. The initial inventory of cores for the current period is given by
V C
tc . The immediate increase results of the incoming number of cores Q̃C

tc.
The linear decrease during the period equals the number of cores taken
out of the inventory. The area under the inventory balance curve equals
V C
tc + Q̃C

tc− 1/2QC
tc. The area multiplied with the inventory holding unit cost

hC
c gives the inventory holding cost for the incoming storage. The outgoing

inventory cost is calculated analogously. The initial inventory for items V I
te,

material V R
tr , and waste V D

td is linearly increased by the quantities of items
QI

te, material QR
tr, and waste QD

td gained from the disassembly process. The
average inventory is multiplied with the inventory holding unit cost hI

e, h
R
r ,

and hD
d . The resulting inventory at the end of the study horizon is multiplied

with the factor for the infinite annuity.

CV
τ =
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zt−τ
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+

(∑
c

hC
c V

C
τ+τ̄ ,c +

∑
e

hI
eV

I
τ+τ̄ ,e +

∑
r

hR
r V

R
τ+τ̄ ,r +

∑
d

hD
d V
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τ+τ̄ ,d

)
zτ̄

1− z

(3.141)

The last part of cost can be summarised as the shortage cost. The σC, σI,
σR, and σD denote fix factors of contractual penalties. For simplicity, we
assume that a fixed percentage of the acquisition cost or revenues will be
paid to the contracting party when a violation of the contracted quantities
occurs. The quantities of shortage are the difference between contracted
quantities (QC

tc, D
I
te, D

R
tr, and QD

td) and actually acquired or distributed
quantities.

CS
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)⎤⎥⎦ (3.142)

Note that the shortage for unlimited disposal does not exist. But just in the
case that an upper disposal limit exists, the QD

td is included. The contracted
number of cores must not be exceeded. The indices for the relevant periods
of the study horizon form the set T̃ = {τ, . . . , τ + τ̄ − 1}.

Q̃C
tc ≤ QC

tc ∀ t ∈ T̃ , c (3.143)

Furthermore, the acquired cores cannot underrun the guaranteed level βc.
The result of the calculation of the lower limit βcQ

C
tc is rounded up to the

next integer, because the cores come only in entire units.

Q̃C
tc ≥

⌈
βcQ

C
tc

⌉ ∀ t ∈ T̃ , c (3.144)

Also, the distributed items, the material, and the waste must not exceed
the contracted quantities.

Q̃I
te ≤ DI

te ∀ t ∈ T̃ , e (3.145)
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Q̃R
tr ≤ DR

tr ∀ t ∈ T̃ , r (3.146)

Q̃D
td ≤ QD

td ∀ t ∈ T̃ , d (3.147)

If an upper limit for, e.g., disposal does not exist, QD
td could be set to infinity.

This is the case for the regular disposal to avoid infeasible solutions, i.e.,
QD

t,1 = ∞ ∀ t.
Each core is disassembled completely and therefore all containing items

are either determined for direct distribution XI
tci, for material recycling

XR
tcir, or for disposal X

D
tcid. Īc denotes the number of items a core consists

of.

QC
tc = XI

tci +
∑
r

XR
tcir +

∑
d

XD
tcid ∀ t ∈ T̃ , c, i ∈ {1, . . . , Īc} (3.148)

The number of items determined for material recycling, and waste is multi-
plied with their weight wci to obtain the amount of material in weight units
in the specific boxes and bins.

QR
tr =

∑
c

Īc∑
i=1

wciX
R
tcir ∀ t ∈ T̃ , r (3.149)

QD
td =

∑
c

Īc∑
i=1

wciX
D
tcid ∀ t ∈ T̃ , d (3.150)

Depending on the condition of the core the usage for distribution might
be limited. All non-genuine items consisting of the wrong material must
be disposed of. The probabilities of core condition and damaging during
the disassembly process do not vary over time. Hence, the index t is added
compared to the basic model.∑

d

XD
tcid ≥ ζciιciQ

C
tc ∀ t ∈ T̃ , c, i ∈ {1, . . . , Īc} (3.151)

Items that are genuine, functioning, and do not get damaged can be reused.

XI
tci ≤ (1− ζci)(1− ηci)(1− θci)Q

C
tc ∀ t ∈ T̃ , (c, i) ∈

⋃
e

Pe (3.152)

Each box has at most one contractual party that requires a certain level
of purity within the recycling box. Thereby, the beneficial fraction πcir of
all material in the box must exceed the required minimum ωr. Depending
on the contract the purity has to be satisfied not in every period but as
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discussed above over a certain number of periods in the past. This number
of periods is denoted by τ r and can be individually set for every recycling
box r. This might be necessary, because the index r is used to differentiate
between material as well as recycling companies.

ωr

t∑
l=t−τr

QR
lr ≤

∑
c

Īc∑
i=1

wciπcir

t∑
l=t−τr

XR
lcir ∀ t ∈ T̃ , r (3.153)

This inclusion of a fixed number of past periods must be treated with cau-
tion, because infeasibility might be caused by this inclusion in combination
with the limited number of cores to be acquired. Let us assume one past
period with high purity material and high quantities. The other past pe-
riods between the latter one and the upcoming period to be planned next
have low purity material. When rolling on the horizon the period with high
purity material is excluded from the purity averaging. Instead of this ex-
cluded period the new period to be planned is used to average the purity.
As long as enough material is available (i.e., high quantities of cores to be
disassembled) this balancing is possible. But, if only a low quantity is avail-
able the required amount of (pure) material cannot be gained, because of
input limitations. Thus, for the numerical example, which is calculated au-
tomatically, no past periods are considered, i.e., τ r = 0 ∀ r. This simplifies
Eq. (3.153) to the straightforward extension from the basic model.

ωrQ
R
tr ≤

∑
c

Īc∑
i=1

wciπcirX
R
tcir ∀ t ∈ T̃ , r (3.154)

For waste no purity consideration is applied. Because of multiplicity and
commonality different items within a core and of several cores satisfy the
demand of an item. The added number of items gained by disassembling
(XI

tci) equals the number of items to satisfy the demand for the position e.
The set Pe contains the core item combination (c, i) for satisfying a specific
demand position e.

QI
te =

∑
(c,i)∈Pe

XI
tci ∀ t ∈ T̃ , e (3.155)

All numbers of items without a demand assignment are zero.

XI
tci = 0 ∀ t, (c, i) �∈

⋃
e

Pe (3.156)
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A special regard needs to be paid to the hazardous waste. Items that are
hazardous have to be treated specifically. They can only be stored in a
particular place. This place is used for disposal bin 2 and hazardous items
with a demand. Therefore, no hazardous items go into material recycling
and regular waste. The set H contains the core item combinations (c, i) of
all hazardous items. The boxes and bins where hazardous items must not
be placed, form the basis for setting the corresponding numbers of items
gained by disassembly to zero.

XR
tcir = 0 ∀ t, (c, i) ∈ H, r (3.157)

XD
tcid = 0 ∀ t, (c, i) ∈ H, d ∈ {1} (3.158)

Note that d = 1 denotes regular waste and d = 2 hazardous waste. The
inventory balance for cores, items, material, and waste is given below. The
initial inventory of the next period is calculated by the initial inventory
of the actual period plus the inflow and minus the outflow. Thereby, the
inventory in period τ , which is the first in T̃ , is given.

V C
t+1,c = V C

tc + Q̃C
tc −QC

tc ∀ t ∈ T̃ , c (3.159)

V I
t+1,e = V I

te +QI
te − Q̃I

te ∀ t ∈ T̃ , e (3.160)

V R
t+1,r = V R

tr +QR
tr − Q̃R

tr ∀ t ∈ T̃ , r (3.161)

V D
t+1,d = V D

td +QD
td − Q̃D

td ∀ t ∈ T̃ , d (3.162)

The limit for the incoming storage is given by V 1 and needs to be adhered
to each period. In the incoming storage only cores are stored. The individual
storage usage is given by the factor νCc .∑

c

νCc

(
V C
tc + Q̃C

tc

)
≤ V 1 ∀ t ∈ T̃ (3.163)

The distribution storage is used for items, material, and waste and is limited
by V 2. Moreover, the place for hazardous waste and items is limited by V 3.
The corresponding storage usage factors are applied here, too.∑

e

νIe
(
V I
te +QI

te

)
+
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r

νRr
(
V R
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)
+
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d

νDd
(
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) ≤ V 2

∀ t ∈ T̃ (3.164)
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Table 3.22 Number of decision variables and constraints
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(∣∣⋃

e Pe

∣∣+ (∑
c Īc − |H|+ 1

)
(r + d) + |H| c+ e

)
τ̄
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∣∣⋃

e Pe

∣∣+ (∑
c Īc − |H|) (r + d) + |H|

constraints
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2
∑

c Īc + c+
∣∣⋃
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∣∣+ 2r + e+ d+ 3
)
τ̄

∑
e∈{e|Pe⊆H}

νIe
(
V I
te +QI

te

)
+ νD2

(
V D
t,2 +QD

t,2

) ≤ V 3 ∀ t ∈ T̃ (3.165)

Finally, all decision variables are non-negative and for the upcoming period
τ the following variables are integer variables.

Q̃C
τc, X

I
τci, X

R
τcir, X

D
τcid, Q̃

I
τe ∈ Z

∗ ∀ c, i ∈ {1, . . . , Īc}, r, d, e (3.166)

The resulting model dimension (i.e., the number of constraints and vari-
ables) is listed in Table 3.22. The basis is again a compact model version
which can be found in the appendix B.8. Here, the variables c and e denote
the number of cores and demand positions, respectively. The term | · | repre-
sents the cardinality of the corresponding set. As can be seen, the number
of constraints and variables increases linearly with any increase of cores,
recycling boxes, disposal bins, items a core consists of, demand positions,
and the study horizon length. The number of integer variables is indepen-
dent of the study horizon length. In comparison with the basic model (see

Table 3.2) the number of integer variables increases by Q̃C
tc and Q̃I

te, which
leads to the adding of c and e in the table. The overall number of decision
variables increases of course by the length of the study horizon length τ̄ plus
the variables with the tilde, i.e., Q̃C

tc, Q̃
I
te, Q̃

R
tr, and Q̃D

td for every study pe-
riod. The number of constraints increases, too. Of course, the study horizon
length has the major impact for this increase. But since no lower limits for
items, material, and disposal are incorporated in the planning a decrease
per period can be detected. In addition, the workload limitation is not ap-
plied, but instead of it three constraints per period assure that the inventory
limits are added.

3.4.3.4 Decision support for contracting

Before we continue with a numerical example a further beneficial aspect
for the decision maker is considered. So far we had the quantities of cores,
items and material given. These quantities are given by contracts with busi-
ness partners. In an exemplary company the following might be practise.
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The quantities for the cores to be processed are arranged by manager A.
The planning of the disassembly process is done by manager B. Manager
B uses the rolling horizon planning. On the contrary, manager A uses dif-
ferent means of planning or just a rule of thumb. As a general assumption
manager B might assume that more is better. Thus, manager A generates
the constraints manager B has to deal with and manager B gets stressed to
arrange a good plan of the disassembly. If manager A would have a support
for the decisions to be made which is connected with the planning done by
manager B, the outcome could lead to a higher profit for the company. Such
a possible decision support is presented in the sequel.

Once the current period τ is finally planned, we assume that the result is
realised. Hence, the focus is switched to the next period τ +1, which means
that the study horizon is rolled one period forward. This includes another
period τ + τ̄ in the planning. This period is the one that was just outside
the study horizon when planning the current period. For the planning of
the next period the corresponding data of the new period is required. This
data is determined in advance, i.e., at least τ̄ periods ahead. But before the
next period is finally planned an intermediate planning can be conducted,
that does not only focus on the periods of the study horizon, but also of one
or more periods further in the future.65 This intermediate planning we call
pre-planning. The difference between the periods of the study horizon and
the future period τ + τ̄—we call it contracting period in the sequel—is that
in the contracting period the availability of cores and demand of items and
material are initially unlimited. The pre-planning still considers the study
horizon as well as the contracting period and tries to find a solution to
maximise the profit. The result of the planning could be that not infinitely
many cores can be acquired, because of limited resources of the company.
With this information of how many cores to acquire in the contracting
period manager A could try to arrange contracts to realise these numbers.
And these contracts should result in a better profit than just arranging
contracts over quantities by rule of thumb.

Of course, already known limitations such as existing long-term contracts
or expected seasonal effects can be considered in the pre-planning, too. The
pre-planning can be repeated as often as new planning relevant information
occurs. Since this pre-planning is guidance to the decision maker it is not
necessary to insist on integral solutions. Instead, a relaxed planning problem
can be used that does not contain integer variables. This speeds up the
solving significantly and should clearly motivate to use this opportunity.
The relaxation is without problem, because we do not know whether the

65 We consider only one period ahead.
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Pre-plannning period τ (incl. look-ahead)
to see how many cores, items, and how
much material to contract for τ + τ̄

Arranging contracts and determining limits
for period τ + τ̄ according to the result of

the pre-planning

Switch to next period: τ = τ + 1
Optimisation of current period τ

(incl. τ̄ periods look-ahead)

LP
MILP

Fig. 3.28 Iterative planning process

resulting quantities can be contracted and, if they are contracted, whether
they do not change over time. Note that we assume time varying data in
the study horizon.

With this pre-planning it can also be checked whether certain quanti-
ties lead to infeasible combinations and what influence the quantities to be
contracted might have on the profit. The pre-planning can be conducted
iteratively and precedes the planning of the next period. The iterative plan-
ning process including the pre-planning is summarised in Fig. 3.28. The
current period is planned finally (bottom right in the figure). Then the fo-
cus is shifted to the next period (bottom left), because there is nothing else
to be done for the realised period. The succeeding pre-planning includes
the new study horizon, i.e., based on the old study horizon the old current
period is excluded and the contracting period is included. And since the
index of the current period τ is shifted to the next period the index of the
contracting period is τ + τ̄ − 1 (top left). According to the result of an iter-
ation of the pre-planning the contracts are arranged (top right). If further
contracts need to be arranged or other changes occur, the pre-planning is
repeated and the changes are adopted. When all aspects are considered or
the time runs out, because the next period must be planned finally, the
current period is planned finally. Thus, the cycle is closed.

In order to conduct the pre-planning slight changes of the mathematical
model have to be made. Nevertheless, most of the equations of the above
presented model stay identical. The first change is an increase by one of
the period index τ = τ + 1 (see Fig. 3.28). This represents the rolling of
the horizon and does not make any changes in the model necessary. But
secondly, in the estimation of the revenues only the average of the periods
without the contracting period is included. We believe that with excluding
the contracting period for the average calculation the result of the planning
is steadier. This makes a change necessary. Thus, Eq. (3.139) is changed to
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For the same reason the cost calculation in Eq. (3.140) is adapted, too.
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In the planning of the contractual period no shortages are assumed. Thus,
the cost calculation (i.e., Eq. (3.142)) needs to be adapted
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and the constraints of the contracted quantities (i.e., Eqs. (3.143)–(3.147)),

too. These constraints are adapted by substituting the index set from T̃ to
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T̃ ′ = {τ, . . . , τ + τ̄ − 2} in the equations. If individual limits exist (cores,
items, material, and waste), they can be added by constraints like

Q̃C
τ+τ̄−1,c = QC

τ+τ̄−1,c for a particular c, (3.170)

where QC
τ+τ̄−1,c denotes the fixed value. In the remaining constraints (3.148)

through (3.155) and (3.159) through (3.165) the index set T̃ stays identical,
because the item flow during the disassembly process has to be obeyed in
the contractual period as well. The integrality constraints (3.166) do not
apply for this pre-planning.

3.4.4 Numerical example

3.4.4.1 Data

The planning presented above shall be illustrated by an example of disas-
sembling used forklift trucks. The example is based on the one in Sect. 3.1.3
and the truck is depicted in Fig. 3.4 (on page 46). In total we consider three
different trucks (diesel, gas, electricity) consisting of eight items A–H each.
The data necessary for this dynamic planning problem is more comprehen-
sive, because of the several periods. We limit the example to 24 periods in
order to be able to demonstrate the planning and to have enough iterations
to discuss the results.

The time independent data from the former example is the number of
items per core Īc, the weight wci, and the disassembly cost cJc (see Table 3.4),
the core condition ζci, ηci, ιci, and θci (see Table 3.5), the demand positions
Pe (see Table 3.6), the hazardous item H = {(1,H)}, as well as the mini-
mum purity requirement ωr and the beneficial fractions πcir (see Table 3.8).
Further time independent data is the length of the study horizon τ̄ = 5 and
the discounting factor z = 20/21, which equals a discounting with a five per
cent interest rate. The penalty cost factors σC, σI, σR, and σD for not meet-
ing the contracting quantities are 1, 0.25, 0.25, and 0.25, respectively. The
storage limits V 1, V 2, and V 3 are set to 200, 1,000, and 30, respectively. The
remaining time independent data for the inventory, the guarantee level βc,
and the number of past periods for the purity averaging τ r is summarised
in Table 3.23.

The unit costs cAtc and cDtd as well as the prices rIte and rRtr for all 24
periods are listed in Table 3.24and the contracted quantities for the first
five periods in Table 3.25.66 The values are chosen randomly. Note that for
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Table 3.23 Inventory data, guarantee level, and past periods

cores items material disposal

c V C
1,c hC

c νCc βc e V I
1,e hI

e νIe r V R
1,r hR

r νRr τr d V D
1,d hD

d νDd

1 10 14.0 1.0 0.9 1 40 2 0.18 1 500 0.004 0.0078 0 1 750 0.002 0.0065
2 7 14.2 1.0 0.9 2 80 10 0.02 2 1700 0.004 0.0077 0 2 660 0.005 0.0070
3 5 14.3 0.9 0.9 3 20 50 5.40 3 53 0.004 0.0020 0

4 0 0.004 0.0015 0

Table 3.24 Unit costs and prices of periods 1–24

cAtc rIte rRtr cDtd

t c = 1 c = 2 c = 3 e = 1 e = 2 e = 3 r = 1 r = 2 r = 3 r = 4 d = 1 d = 2

1 2,300 2,600 2,900 30 300 2,400 1.35 0.95 0.75 0.45 0.20 0.40
2 2,345 2,599 2,789 31 315 2,352 1.40 0.93 0.75 0.43 0.21 0.42
3 2,460 2,545 2,881 31 324 2,352 1.37 0.95 0.79 0.44 0.21 0.43
4 2,343 2,530 2,928 31 325 2,357 1.30 0.93 0.79 0.45 0.21 0.42
5 2,316 2,595 2,815 31 329 2,379 1.35 0.96 0.78 0.45 0.21 0.40
6 2,279 2,579 2,689 32 313 2,417 1.41 0.98 0.80 0.45 0.21 0.40
7 2,336 2,473 2,614 33 316 2,410 1.36 1.01 0.80 0.44 0.20 0.41
8 2,236 2,491 2,691 32 329 2,379 1.39 0.94 0.82 0.44 0.19 0.40
9 2,210 2,396 2,732 32 326 2,322 1.32 0.91 0.84 0.43 0.19 0.42
10 2,303 2,333 2,670 31 332 2,356 1.37 0.93 0.88 0.45 0.19 0.43
11 2,212 2,386 2,558 31 342 2,304 1.34 0.97 0.88 0.46 0.20 0.45
12 2,280 2,288 2,582 31 346 2,409 1.33 1.03 0.90 0.45 0.20 0.46
13 2,357 2,349 2,568 30 337 2,398 1.39 1.06 0.86 0.43 0.20 0.46
14 2,305 2,385 2,509 29 343 2,414 1.38 0.99 0.88 0.43 0.20 0.47
15 2,378 2,493 2,510 29 330 2,391 1.32 1.02 0.84 0.42 0.20 0.47
16 2,283 2,476 2,411 30 321 2,481 1.33 0.95 0.88 0.41 0.20 0.48
17 2,295 2,569 2,491 31 327 2,420 1.39 0.98 0.92 0.41 0.20 0.48
18 2,186 2,597 2,448 31 317 2,373 1.39 1.03 0.88 0.40 0.20 0.47
19 2,080 2,568 2,526 33 319 2,372 1.41 0.97 0.88 0.41 0.21 0.46
20 2,071 2,645 2,530 32 311 2,352 1.48 1.01 0.85 0.41 0.21 0.46
21 2,030 2,607 2,616 32 311 2,401 1.50 1.08 0.85 0.40 0.22 0.47
22 2,118 2,725 2,526 32 301 2,371 1.50 1.10 0.90 0.39 0.22 0.48
23 2,091 2,699 2,613 33 288 2,326 1.57 1.01 0.86 0.41 0.23 0.48
24 2,172 2,813 2,600 33 283 2,414 1.62 0.98 0.89 0.42 0.22 0.50

the disposal no specific quantities are contracted and the value infinity is
used in the table. This, on the other hand, makes the contractual penalties

66 Of course, the unit costs and prices are not known this much in advance (see Ta-
ble 3.24). For the planning only the data of the corresponding study horizon is necessary.
Even though we consider time varying data for cost, prices, and quantities, we only vary
the quantities to keep the amount of data for the example at a moderate level.
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Table 3.25 Contracted quantities of periods 1–5

QC
tc DI

te DR
tr QD

td

t c = 1 c = 2 c = 3 e = 1 e = 2 e = 3 r = 1 r = 2 r = 3 r = 4 d = 1 d = 2

1 30 188 25 216 215 210 53,000 61,000 0 0 ∞ 0
2 34 189 25 191 246 208 50,000 67,000 0 0 ∞ 0
3 35 185 26 201 261 235 55,000 60,000 0 0 ∞ ∞
4 33 179 30 212 287 248 48,000 59,000 0 0 ∞ 0
5 34 158 29 239 269 212 44,000 64,000 0 0 ∞ 0

σD irrelevant. However, one restriction does exist. Only every fourth period
the hazardous waste is transported to the disposal facility. Hence, the corre-
sponding upper limits QD

t,2 are set to zero to avoid a transport in the other
three periods. With having the above given data at hand, the planning can
begin.

A last word on modelling several suppliers and customers: To model dif-
ferent suppliers with different contracting details for the same core another
core needs to be added. This way the index c represents a core from a spe-
cific supplier. For example, let us assume another supplier for core c = 3.
Then a core c = 4 is added that has the same data for all material depen-
dent data, but for the guarantee level and/or price different values are used
for example. The same applies to the distribution.

3.4.4.2 Rolling planning

Optimising the current period

The planning starts with already contracted quantities for the first five
periods as given in Table 3.25. The first period needs to be planned to fix the
quantities of cores, items, material, as well as regular and hazardous waste.
Thus, we start with the optimisation of the current period (see Fig. 3.28).
The period index τ is set to one and the model (see Sect. 3.4.3.3) is solved
to optimum. The optimal solution is listed in the Tables 3.26–3.29. The
optimal values of XI

tci, X
R
tcir, and XD

tcid can be found in the appendix B.9
(see Table B.1).

As can be seen in Tables 3.26 and 3.27, only in the current period the val-
ues are strictly integer. This of course leads automatically to integer values
for the initial inventories of the second period. As expected the inventory is
not empty at the end of the study horizon (e.g., V C

6,1 = 65.02) such that the
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Table 3.26 Optimal solution of first iteration (part one)

Q̃C
tc QC

tc V C
tc

t c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

1 27 188 25 24 192 0 10 7 5
2 31 189 25 19.23 191.36 18.74 13 3 30
3 32 185 26 22.91 140.51 62.26 24.77 0.64 36.26
4 30 179 30 0 209.26 30 33.87 45.13 0
5 31 158 29 29.85 172.87 29 63.87 14.87 0
6 65.02 0 0

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

Table 3.27 Optimal solution of first iteration (part two)

Q̃I
te QI

te V I
te

t e = 1 e = 2 e = 3 e = 1 e = 2 e = 3 e = 1 e = 2 e = 3

1 212 9 210 172 213 190 40 80 20
2 191 246 208 191 208.48 208 0 284 0
3 201 261 200.74 201 161.79 200.74 0 246.48 0
4 212 287 236.87 212 207.17 236.87 0 147.27 0
5 208.55 268.12 199.85 208.55 200.69 199.85 0 67.43 0
6 0 0 0

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

Table 3.28 Optimal solution of first iteration (part three)

Q̃R
tr QR

tr V R
tr

r r r

t 1 2 3 4 1 2 3 4 1 2 3 4

1 46916 53600 0 0 46416 51900 0 0 500 1700 53 0
2 50000 49002.65 0 0 50000 49002.65 0 0 0 0 53 0
3 50948.78 48950.09 0 0 50948.78 48950.09 0 0 0 0 53 0
4 48000 39112.71 0 0 48000 39112.71 0 0 0 0 53 0
5 44000 64000 0 0 44000 64000 0 0 0 0 53 0
6 0 0 53 0

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.
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Table 3.29 Optimal solution of first iteration (part four)

Q̃D
td QD

td V D
td

t d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

1 766 0 16 4800 750 660
2 0.91 0 0.91 3845.44 0 5460
3 2.04 13886.71 2.04 4581.27 0 9305.44
4 0.72 0 0.72 0 0 0
5 0 0 1.41 5969.34 0 0
6 1.41 5969.34

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

continuing business assumption is realised. Taking a look at Table 3.29 it can
be noticed that the only possibility for disposing hazardous waste in period
three will probably be used to empty the hazardous inventory completely
(i.e., V D

4,2 = 0). The hazardous limit is V 3 = 200 and the storage usage factor

for the only hazardous item H of core c = 1 is νD2 = 0.007 (see Table 3.23).
Thus, the limit divided by the factor results in 200/0.007 = 28,571.43 kg as

upper limit for Q̃D
t,2. The value in Table 3.29 (row t = 3, column d = 2 of

Q̃D
td) of 13,886.71 kg is not at the upper limit.
The revenues R1 of the optimisation (i.e., study horizon plus the infi-

nite estimation) sum up to 14,450,215.06e, the acquisition, disassembly,
and disposal cost C1 to 14,205,613.32e, the inventory holding cost CV

1 to
65,581.15e, and the contractual penalties CS

1 to 427,607.38e. This results
in an objective of −248,586.79e. Of course, this is not the profit for the
first period only. The values for the first period only can be calculated with
the given solution. The revenues are 627,316.60e, the acquisition, disassem-
bly, and disposal cost 684,513.20e, the inventory holding cost 10,274.26e,
and the contractual penalties 26,190.85e. Hence, a profit of −93,661.71e
is gained in the first period.

Pre-planning and contracting

Now, the first period is planned and the results will be realised. Hence, the
focus is shifted to the next period. The second period is going to be pre-
planned, which is coupled with the negotiating of contracts in period six.
What is known in advance is that the hazardous waste is not going to be
transported in period six. Thus, the upper limit is set to zero and integrated
in the pre-planning model by
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Table 3.30 Solution of pre-planning period two

Q̃C
6,c Q̃I

6,e Q̃R
6,r Q̃D

6,d

c e r d

1 2 3 1 2 3 1 2 3 4 1 2

1st run 0 157.23 0 200.03 220.03 155.66 0 124,690.83 5,982.24 0 0 0
2nd run 25 115.03 15 198.05 203 128.73 0 115,332.22 6,003.89 0 0 0
Contracted
quantities 25 117 16 215 190 135 0 118,000 6,000 0 ∞ 0

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

Q̃D
6,2 = QD

6,2 = 0 . (3.171)

Solving the pre-planning model leads to quantities of cores, items, and
material as depicted in Table 3.30in the first row. While starting to contract
suppliers and customers it becomes evident that for some reason the com-
pany is forced to acquire at least 25, 20, and 15 units of core 1, 2, and 3,
respectively. Before the contracting is continued these new limitations are
also added to the pre-planning model with

Q̃C
6,1 ≥ 25, Q̃C

6,2 ≥ 20, Q̃C
6,3 ≥ 15. (3.172)

The model is solved another time. The result can be found in the second
row of the table. This procedure can repeat many times, but it shall be
sufficient for the illustration here. Interestingly, no disposal is considered in
period six. The hazardous disposal cannot be transported, i.e., is limited to
zero (see Eq. (3.171)). The regular waste d = 1 is always unlimited. This
indicates that it is beneficial to avoid disposal and that all items can be
used for item reuse, material recycling, or are stored. The contracts are now
settled for quantities as listed in the third row of Table 3.30.

In order to avoid manually choosing the values for the contracts in the
contracting period in our numerical example, the contracted values are de-
termined automatically. This means, a random value of the interval ±10%
based on the results of the second run are choosen. Afterwards, the values
are rounded to integral values for cores and items as well as multiples of
1,000 kg of material and waste. To give an example, 198.05 units of demand
position e = 1 should be distributed according to the results. Hence, the
contracted value is chosen out of the interval QI

6,1 ∈ [178.25; 217.86]. One

such value is 214.51 and this is rounded to QI
6,1 = 215. Thereby, the minimal

values of 25, 20, and 15 for cores cannot be underrun.
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Table 3.31 Contracted quantities for pre-planning period 11

QC
tc DI

te DR
tr QD

td

c e r d

t 1 2 3 1 2 3 1 2 3 4 1 2

11 25 140 16 191 188 155 41,000 49,000 0 0 ∞ ∞
12 25 159 15 178 165 161 36,000 48,000 5,000 0 ∞ 0
13 25 143 15 181 195 153 39,000 50,000 5,000 0 ∞ 0
14 27 137 15 165 162 160 38,000 45,000 6,000 0 ∞ 0

Table 3.32 Solution of pre-planning period 11

Q̃C
15,c Q̃I

15,e Q̃R
15,r Q̃D

15,d

c e r d

1 2 3 1 2 3 1 2 3 4 1 2

Solution 25 144.08 15 172.72 168.26 164.37 40,545.86 47,614.42 2,235.69 0 0 0
Contracted
quantities 25 150 15 157 155 178 44,000 50,000 2,000 0 ∞ ∞

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

Once all quantities are contracted the values are stored in the param-
eters QC

6,c, D
I
6,e, D

R
6,r, and QD

6,d (see Table 3.30 third row). Note that the
regular disposal is not limited to maintain a feasible solution. Subsequently,
the current period can be optimised as explained above. After eight further
iterations period ten is completely planned. During the planning the con-
tracted quantities QC

tc, D
I
te, D

R
tr, and QD

td developed as listed in Table 3.31.
Only the relevant periods are listed for the pre-planning of period 11. With
this information, the initial inventory in period 11, the lower limits of 25,
20, and 15 units of cores 1, 2, and 3, respectively, and the possibility to
dispose of hazardous waste in period 15 the pre-planning of period 11 takes
place. The resulting quantities for period 15 are displayed in Table 3.32.
The contracted quantities are derived from this solution and added to the
data for the final planning. But in the meantime the already contracted
quantities might change. This is an aspect of time varying data. When the
changes occur before the pre-planning they can be included. But they can
also occur after the pre-planning. This case is illustrated here. The data for
the final planning of period 11 is updated and listed in Table 3.33. Thereby,
the contracted quantities of period 15 are added and the remaining modified
according to the changes taken place. For example, the contracted quantities
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Table 3.33 Contracted quantities for planning period 11

QC
tc DI

te DR
tr QD

td

c e r d

t 1 2 3 1 2 3 1 2 3 4 1 2

11 25 140 16 191 190 150 41,000 49,000 0 0 ∞ ∞
12 25 170 15 178 165 170 36,000 48,000 5,000 0 ∞ 0
13 25 140 15 190 195 153 39,000 50,000 5,000 0 ∞ 0
14 27 137 18 160 160 160 38,000 45,000 6,000 0 ∞ 0
15 25 150 15 157 155 178 44,000 50,000 2,000 0 ∞ ∞

of core 2 in period 12 changes from 159 to 170—reasons for this can be man-
ifold. With this data the period 11 is finally planned and the pre-planning
of the succeeding period comes next.

This iterative procedure repeats as long as the business continues. In the
example the iterating stops at period 20. The contracted quantities of all 24
periods are listed in Table 3.34 and the solutions of the periods are depicted
in Tables 3.35 and 3.36. The optimal values for the decision variables XI

tci,
XD

tcid, and XR
tcir can be found in the appendix B.10 in the Tables B.2, B.3,

and B.4, respectively.
The results show some variation in the values from period to period.

This indicates that because of the changing data the solution needs to be
adjusted from period to period in order to maintain a high profit. The
profit (including the causing revenues and cost) for each period is depicted in
Table 3.37. The sum of the profit over all 20 periods sums up to 204,376.77e.
In addition, the development of the revenues, cost, and profit are depicted
in Fig. 3.29. Starting with the initial data the revenues and cost decrease
over the first periods until they level between 500,000 and 600,000e. On
the contrary, the profit increases over the first periods and levels slightly
above the zero value. This behaviour is expected, because in later periods
the pre-planning and the resulting contracting show the benefits compared
to the initial given data. On the other hand, this proves the gain of the
pre-planning.
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Table 3.34 Contracted quantities of periods 1–24

QC
tc DI

te DR
tr QD

td

t c = 1 c = 2 c = 3 e = 1 e = 2 e = 3 r = 1 r = 2 r = 3 r = 4 d = 1 d = 2

1 30 188 25 216 215 210 53,000 61,000 0 0 ∞ 0
2 34 189 25 191 246 208 50,000 67,000 0 0 ∞ 0
3 35 185 26 201 261 235 55,000 60,000 0 0 ∞ ∞
4 33 179 30 212 287 248 48,000 59,000 0 0 ∞ 0
5 34 158 29 239 269 212 44,000 64,000 0 0 ∞ 0
6 25 110 15 202 215 129 0 106,000 6,000 0 ∞ 0
7 25 138 16 179 162 156 36,000 60,000 2,000 0 ∞ ∞
8 25 162 16 175 164 176 43,000 45,000 5,000 0 ∞ 0
9 26 157 16 178 182 176 38,000 51,000 6,000 0 ∞ 0
10 25 169 16 195 173 166 38,000 48,000 6,000 0 ∞ 0
11 25 140 16 191 190 150 41,000 49,000 0 0 ∞ ∞
12 25 170 15 178 165 170 36,000 48,000 5,000 0 ∞ 0
13 25 140 15 190 195 153 39,000 50,000 5,000 0 ∞ 0
14 27 137 18 160 160 160 38,000 45,000 6,000 0 ∞ 0
15 25 150 15 157 155 178 44,000 50,000 2,000 0 ∞ ∞
16 25 176 15 174 194 161 44,000 53,000 5,000 0 ∞ 0
17 26 138 15 168 187 186 41,000 48,000 0 0 ∞ 0
18 27 146 16 178 165 173 43,000 46,000 0 0 ∞ 0
19 27 142 15 187 187 167 39,000 55,000 6,000 0 ∞ ∞
20 25 147 15 186 191 167 46,000 53,000 0 0 ∞ 0
21 25 155 15 196 189 157 40,000 47,000 0 0 ∞ 0
22 27 157 15 180 160 172 40,000 52,000 0 0 ∞ 0
23 25 156 16 188 196 171 45,000 55,000 0 0 ∞ ∞
24 25 176 15 190 179 163 44,000 52,000 0 0 ∞ 0

3.4.4.3 Planning evaluation

Variation of z

In the above presented numerical example the value of z was set to 20/21. In
order to find the appropriate value of z the decision maker has to evaluate
the results of the planning for different values of z for a specific problem.
Thereby, the remaining parameters should be comparable in each evalu-
ation. Hence, it might be helpful to use historic data as basis and make
according changes. Of course, this is difficult especially for the contracted
number of quantities, because they are influenced by the planning itself.

Let us assume a set of historic data. Based on this data a planning took
place. The result was that 100 cores should be acquired. In the end, only 90
cores were acquired. When the planning is repeated with a different method-
ology and/or different data, a value other than 100 , e.g., 120, is the result.
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Table 3.35 Solution of 20 period planning (part one)

Q̃C
tc QC

tc V C
tc

t c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

1 27 188 25 24 192 0 10 7 5
2 31 189 25 19 192 18 13 3 30
3 32 185 26 27 135 63 25 0 37
4 30 179 30 7 200 30 30 50 0
5 33 158 29 29 183 20 53 29 0
6 25 110 15 81 114 24 57 4 9
7 25 138 16 25 138 16 1 0 0
8 24 162 16 25 162 16 1 0 0
9 25 157 16 25 157 16 0 0 0
10 25 169 15 23 160 14 0 0 0
11 23 140 16 14 149 17 2 9 1
12 23 170 15 27 164 0 11 0 0
13 25 140 15 28 146 30 7 6 15
14 27 137 18 25 137 18 4 0 0
15 25 150 15 26 150 0 6 0 0
16 25 176 15 29 176 0 5 0 15
17 26 138 15 27 137 38 1 0 30
18 27 146 16 27 147 23 0 1 7
19 27 142 15 25 142 15 0 0 0
20 25 147 15 27 147 15 2 0 0

Q̃I
te QI

te V I
te

t e = 1 e = 2 e = 3 e = 1 e = 2 e = 3 e = 1 e = 2 e = 3

1 212 9 210 172 213 190 40 80 20
2 191 246 207 191 208 207 0 284 0
3 193 261 195 193 159 195 0 246 0
4 212 287 227 212 204 227 0 144 0
5 203 269 200 208 209 200 0 61 0
6 182 193 129 194 192 135 5 1 0
7 177 160 156 160 160 151 17 0 6
8 175 164 176 180 184 175 0 0 1
9 178 182 170 176 179 170 5 20 0
10 179 172 166 176 180 166 3 17 0
11 160 185 150 160 160 158 0 25 0
12 170 165 170 170 188 162 0 0 8
13 180 194 153 180 171 173 0 23 0
14 160 159 160 160 159 152 0 0 20
15 156 155 160 156 173 148 0 0 12
16 174 194 161 184 202 174 0 18 0
17 168 187 185 180 161 172 10 26 13
18 175 165 167 176 171 167 22 0 0
19 183 170 154 160 164 154 23 6 0
20 168 171 159 168 171 159 0 0 0
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Table 3.36 Solution of 20 period planning (part two)

Q̃R
tr QR

tr V R
tr

r r r

t 1 2 3 4 1 2 3 4 1 2 3 4

1 46,916 53,600 . . 46,416 51,900 0 0 500 1,700 53 0
2 49,909 49,614 . . 49,909 49,614 0 0 0 0 53 0
3 50,222 53,000 . . 50,222 53,000 691 0 0 0 53 0
4 48,000 44,452 . . 48,000 44,452 0 0 0 0 744 0
5 44,000 61,930 . . 44,000 61,930 2,500 0 0 0 744 0
6 . 106,000 6,000 . 355 116,616 5,861 0 0 0 3,244 0
7 34,947.49 59,936 2,000 . 35,047 49,320 2,033 0 355 10,616 3,105 0
8 42,785.51 45,000 4,915.30 . 42,331 49,350 3,283 0 454.51 0 3,138 0
9 38,000 51,000 5,968.82 . 40,136 47,800 5,242 0 0 4,350 1,505.70 0
10 38,000 48,000 5,976.88 . 39,604 50,930 5,198 0 2,136 1,150 778.88 0
11 41,000 49,000 . . 37,260 44,920 252 0 3,740 4,080 0 0
12 36,000 48,000 3,943 . 38,703 49,200 3,691 0 0 0 252 0
13 39,000 50,000 4,107.58 . 40,961 51,220 5,387 0 2,703 1,200 0 0
14 38,000 45,000 5,059.42 . 36,712 45,300 3,780 0 4,664 2,420 1,279.42 0
15 37,253 50,000 2,000 . 33,877 47,590 3,989 0 3,376 2,720 0 0
16 41,640 53,000 5,000 . 41,640 53,020 3,508 0 0 310 1,989 0
17 41,000 48,000 . . 41,401 49,300 5,237 0 0 330 497 0
18 35,098.03 46,000 . . 39,374 54,958 0 0 401 1,630 5,734 0
19 35,819.91 55,000 5,831 . 36,257 51,156 97 0 4,676.97 10,588 5,734 0
20 45,552.06 53,000 . . 40,438 47,500 0 0 5,114.06 6,744 0 0

Q̃D
td QD

td V D
td

t d = 1 d = 2 d = 1 d = 2 d = 1 d = 2

1 766 . 16 4,800 750 660
2 32 . 32 3,800 0 5,460
3 32 14,660 32 5,400 0 9,260
4 32 . 32 1,400 0 0
5 12.88 . 32 5,800 0 1,400
6 0 . 22,682 16,200 19.12 7,200
7 0 17,397.57 32 5,000 22,701.12 23,400
8 0 . 32 5,000 22,733.12 11,002.43
9 0 . 32 5,000 22,765.12 16,002.43
10 0 . 32 4,600 22,797.12 21,002.43
11 0 21,487.64 32 2,800 22,829.12 25,602.43
12 1,576.708 . 16 5,400 22,861.12 6,914.79
13 0 . 32 5,600 21,300.43 12,314.79
14 3,631.52 . 982 5,000 21,332.43 17,914.79
15 0 21,543.36 16 5,200 18,682.91 22,914.79
16 0 . 16 5,800 18,698.91 6,571.43
17 0 . 32 5,400 18,714.91 12,371.43
18 0 . 32 5,400 18,746.91 17,771.423
19 0 19,319.19 32 5,000 18,778.91 23,171.43
20 12,798.15 . 3,682 5,400 18,810.91 8,852.24

Dots denote a value of zero, which is known a priori from the contracted quantities (see
Table 3.34). Values are rounded to two digits. Values with less than two post decimal
digits indicate an exact value without rounding being necessary.
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Fig. 3.29 Development of revenues, cost, and profit

In order to keep the planning comparable the 120 units must be changed
accordingly to the historic data. This means that an absolute change (from
120 to 100), a proportional change (from 120 to 108), a fix change (from
120 to 90), or even something different is chosen. Which of these options is
selected depends on the specific environment and the decision maker has to
decide.

For our numerical example we used four different values of z to illus-
trate such a comparison. Our evaluation is not representative because we
performed only one run with each value and the selection of contracting
quantities as well as data variation is conducted automatically and inde-
pendent for each run. The (undiscounted) sums of the profits over all 20
periods for the values z = 100/104, z = 100/106, and z = 100/107 in relation to
the reference case of z = 100/105 are 68%, 94%, and 87%, respectively. If
the decision maker has to choose between these four values, he or she should
select either z = 100/105 or z = 100/106, because they result in the highest
sum of profits.

For a detailed analysis of the best value of z the illustrated comparison
must be extended to a profound simulation with several runs per value of
z and comparable contracting behaviour as discussed above. Moreover, a
stochastic approach with the goal to maximise the expected sum of profits
and z as decision variable might deliver a good idea for profitable values
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of z. Of course, this requires that the decision maker knows the density or
distribution functions of the stochastic influences.

One period study horizon

To show the benefit of the above presented planning another scenario is
illustrated in the sequel. It is motivated by isolated departments for disas-
sembly planning and contracting. In addition, the contracting department
still does the contracting in advance. On the contrary, the disassembly plan-
ning department does not bother with varying data and therefore performs
the planning only for the upcoming period τ , i.e., there is no inclusion of
forecast information. Speaking in terms of the rolling horizon planning the
study horizon is of length one, whereas the study horizon for the contracting
is still longer, e.g., five periods.

This means that the pre-planning model is used as described above with
the above given model formulation. The model for the planning of the cur-
rent period is slightly modified. Firstly, the study horizon length is set to
τ̄ = 1 for the optimal planning of the period. Secondly, the factor for the
discounting and the infinite annuity is removed. Hence, the parts of the
objective function are

Rτ =
∑
e

rIτeQ̃
I
τe +

∑
r

rRτrQ̃
R
τr (3.173)

Cτ =
∑
c

(
cAτcQ̃

C
τc + cJcQ

C
τc

)
+
∑
d

cDτdQ̃
D
τd (3.174)
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∑
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∑
e
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e

(
V I
τe +

1

2
QI

τe

)
+
∑
r

hR
r

(
V R
tr +

1

2
QR

tr

)
+
∑
d

hD
d

(
V D
td +

1

2
QD

td

)
(3.175)

CS
τ = σC

∑
c

cAtc

(
QC

τc − Q̃C
τc

)
+ σI

∑
e

rIτe

(
DI

τe − Q̃I
τe

)
+ σR

∑
r

rRτr

(
DR
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)
+ σD

∑
d∈{d|QD
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(
QD

τd − Q̃D
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)
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(3.176)

Because of the limitation that only every fourth period hazardous disposal
can be transported to the disposal site together with a study horizon of only
one period the planner needs to assure that the storage for hazardous dis-
posal is not limiting the disassembly process. Therefore, we apply the rule,
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Table 3.38 Sorted absolute changes of acquired cores from period to period

absolute change from period to period

τ̄ = 5 38 38 30 30 29 28 26 24 21 13 12 8 6 5 5 4 4 3 1
τ̄ = 1 65 61 51 48 45 37 33 22 21 15 14 12 6 6 6 4 4 1 0

that whenever we have the opportunity to empty the hazardous inventory
we use it. This means, that the initial inventory of a period succeeding a
period with disposing hazardous waste is always empty. This is the third
modification. A fourth change is an extra constraint which ensures that
the acquired cores of the succeeding period can be placed into the storage.
Otherwise the incoming inventory might be too big to add the guaranteed
quantities of cores. The constraint is as follows.∑

c

νCc
(
V C
τ+1,c +QC

τ+1,c

) ≤ V 1 (3.177)

Since the value of Q̃C
τ+1,c is not known before the upcoming period is

planned, we approximate the quantities by the corresponding contracted
quantities QC

τ+1,c.
Performing the rolling horizon planning as described here, the sum

of the undiscounted profits of the 20 periods decreases significantly to
−219,769.26e in a single run. This is a decrease of more than 200% com-
pared to the rolling planning with a study horizon of five periods. This
example should clearly motivate the inclusion of existing information of
future periods and not just a single period planning. Furthermore, the re-
sulting revenues, cost, and profits show more volatility than the first pre-
sented rolling horizon planning approach (see Fig. 3.30 in comparison with
Fig. 3.29). This increased volatility can be caused by the random choosing
of contracted quantities. Here the interval is fixed to plus/minus 10%. Tak-
ing a look at the absolute changes of the acquired quantities of core 2 (i.e.,

|Q̃C
t,2 − Q̃C

t+1,2|), we see that for the one period planning (τ̄ = 1) changes of
up to 65 units occur (see Table 3.38). The maximal value of the acquired
cores is 189, which means that the 65 significantly exceeds the 10% of 189.
Reasons for this rather large change could be a build-up like that of the
bullwhip effect and/or the short study horizon that prevents the planning
from smoothing the results.67

67 The reduction of the bullwhip effect (variance amplification of ordering quantities
in supply chains) can for example be realised by information enrichment. Cf. Dejonck-
heere et al. (2004): The impact of information enrichment on the bullwhip effect , pp. 729
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Fig. 3.30 Development of objective values

Ex post (optimal) solution with given contracts and inventory limit

When having planned the twenty periods with the here presented method,
we have seen that the results are better than the one period planning. But
the question arises: how much potential still exists to increase the profit?
The answer is insofar difficult as there exists not really an optimal solution
over the planning horizon, because the data becomes available period per
period and is not known a priori. Otherwise, the data could have been
included in the planning. In addition, even the given data (the contracts)
can still change until the current period is planned. Therefore, a comparison
can only be conducted ex post.

A somewhat reasonable approach to find a reference for our solution
might be the following. Given the realised contracted quantities over the
complete planning horizon we try to find the optimal solution when all 20
periods are considered in the planning. In addition, the on-going business is
still assumed, which means that the four periods (i.e., 21–24) are included,
too. Thereby, the decision variables of the last four periods do not have to
be integer values. In order to avoid an increase of inventory at the end of
period 24 (to save primarily disposal cost), we limit the final inventory to

and 745 et seq. The extension of the study horizon can be seen as such an information
enrichment.
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the same as the result of the rolling horizon planning. At the end of period
24 the inventory of cores, items, and material is empty with the exception
of core 1 (i.e., V C

25,1 = 14.105) and the waste (i.e., V D
25,1 = 19,513.267 and

V D
25,2 = 28,571.429). The contracted quantities are listed in Table 3.34.
To evaluate the rolling horizon planning with the ex post optimal solution

the model needs to be modified. This modification is necessary to extend
the integrality constraints to the first 20 periods and the removal of the
discounting.

Maximise P = R− C − CV − CS (3.178)
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(∑
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I
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∑
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R
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)
(3.179)
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)
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(3.182)

The indices for the relevant periods form the set T̃ = {1, . . . , 24}. Hence,
the constraints (3.143) through (3.165) can be kept as they are. In addition,
the final inventory limitation is

V C
25,1 ≤ 14.105, V C

25,2 = 0, V C
25,3 = 0 (3.183)

V I
25,1 = 0, V I

25,2 = 0, V I
25,3 = 0 (3.184)

V R
25,1 = 0, V R

25,2 = 0, V R
25,3 = 0, V R

25,4 = 0 (3.185)

V D
25,1 ≤ 19513.267, V D

25,2 ≤ 28571.429 . (3.186)
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Fig. 3.31 Development of objective values

Furthermore, the integrality constraints need to be extended to

Q̃C
tc, X

I
tci, X

R
tcir, X

D
tcid, Q̃

I
te ∈ Z

∗ ∀ t ∈ {1, . . . , 20}, c, i ∈ {1, . . . , Īc}, r, d, e .
(3.187)

The profit gained in the 20 periods with this model is 308,962.16e. This
profit is significantly greater (about 51%) than the one of the rolling horizon
planning. The development over the periods can be observed in Table 3.39as
well as Fig. 3.31. The solid curves are the ones of the rolling horizon planning
(see Fig. 3.29) and the dotted lines represent the ex-post optimal solution.
Note that the cost is depicted on the negative scale for better viewing. What
we see is that there is not much difference in the development on a big scale.
It is rather the small differences that cause the difference. What is the main
driver for the difference?

We notice that the contractual penalty cost for cores is zero whereas the
one of the rolling horizon planning is greater than zero. Let us take a closer
look at the quantities of cores, items, and material. Therefore, they are listed
in Table 3.40. In comparison to the rolling horizon planning (see Tables 3.35
and 3.36) 19 cores c = 1 and one core c = 3 are acquired more. Multiplied
with the corresponding cost factors we get 44,090 + 2,670 = 46,760e more
acquisition cost. In addition, the 20 cores need to be disassembled which
leads to 5,960e disassembly cost for the 20 cores. This together is already
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Table 3.40 Ex-post solution of 20 period planning

Q̃C
tc Q̃I

te Q̃R
tr Q̃D

td

t c = 1 c = 2 c = 3 e = 1 e = 2 e = 3 r = 1 r = 2 r = 3 r = 4 d = 1 d = 2

1 30 188 25 216 177 210 46834 53574 0 0 766 0
2 34 189 25 191 246 203 50000 51667.12 0 0 32 0
3 35 185 26 201 261 194 48384 55200.88 0 0 16 15460
4 33 179 30 210 180 207 48000 55166 0 0 31.35 0
5 34 158 29 204 225 194 43894 58601 0 0 0 0
6 25 110 15 182 154 129 0 106000 4101 0 0 0
7 25 138 16 160 162 156 36000 60000 0 0 0 28000
8 25 162 16 175 164 176 43000 45000 5000 0 0 0
9 26 157 16 178 182 176 38000 51000 6000 0 0 0
10 25 169 16 177 173 166 38000 48000 6000 0 0 0
11 25 140 16 158 190 150 41000 49000 0 0 0 21200
12 25 170 15 178 165 170 36000 48000 5000 0 0 0
13 25 140 15 164 195 153 39000 50000 5000 0 0 0
14 27 137 18 160 158 160 38000 45000 6000 0 0 0
15 25 150 15 157 155 178 44000 50000 2000 0 0 21400
16 25 176 15 174 194 161 44000 53000 5000 0 0 0
17 26 138 15 168 187 186 41000 48000 0 0 0 0
18 27 146 16 178 165 173 43000 46000 0 0 0 0
19 27 142 15 187 187 167 39000 55000 6000 0 0 14375.53
20 25 147 15 186 189 167 46000 53000 0 0 0 0

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

52,720e. Several shifts of quantities into other periods and the disposal cost
might lead to even higher or lower cost. But even though we have higher
cost for more cores in comparison to the rolling planning the ex-post optimal
planning results in lower cost with a difference of 13,837.48e. This means
that there exists a major cost saving at some other point. Taking a look at
the cost categories acquisition and disassembly, inventory, and contractual
penalty we see that the differences are 10,029,753 + 1,140,780 + 44,508 −
(9,982,993 + 1,134,820 + 46,024) = 51,204e, 43,086 + 118,547 + 4,490 +
1,084 − (35,215 + 121,231 + 4,224 + 2,132) = 4,405e, and 0 + 83,370 +
13,818 − (46,760 + 96,616 + 23,258) = −69,446e, respectively. Hence, the
major cost saving results from the saving of contractual penalties.

The penalty factors σC, σI, and σR are 1, 0.25, and 0.25, respectively.
This means that for each core that is not acquired—even though a contract
exists—the penalty cost factor σC · cAtc has to be paid to the supplier. The
penalty savings for the cores are 44,090e, 0e, and 2,670e for the 19, zero,
and one cores more acquired. Because of the increased number of cores
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to disassemble, the output of items and material increases, too. For the
item distribution the penalties reduce by about 62e, 658e, and 12,526e.
Furthermore, the penalties for material distribution reduce by 6,815e and
2,702e for steel and metal, respectively, increase by 77e for rubber and stay
identical for plastics. We see that together a cost saving of about 69,446e
occurs. Less the increased acquisition and disassembly cost of about 52,720e
an overall cost saving of about 16,726e results, which explains the major
effect of the cost savings.

In addition, for every fulfilment of a contract not only costs are saved,
but also revenues are generated. Hence, it is twice beneficial to fulfil con-
tracts to a higher level. With the 20 cores more 40 items of demand position
e = 1 could be distributed. When we take a look at the solutions Q̃I

t,1 in Ta-
bles 3.35 and 3.40, we notice that eight items are distributed more. Further
30 items are in the inventory at the end of period 20 compared to no item
in the rolling horizon planning. This shows that the additional cores are
not completely intended for item distribution. For demand position e = 1
the eight additional items and the shift of item distribution into other pe-
riods leads to an increased revenue of 250e.68 For demand position two
and three the increased revenue would be 2,631e and 50,106e. Further-
more, more material could be distributed also. Here an increase of 27,261e
and 10,808e for steel and metal, respectively, could be gained. Hence, an
overall increase of about 91,056e of revenues can be expected. Adding the
expected cost savings of 16,726e results in 107,782e increased profit. The
difference to the actual profit increase is caused by additional disposal cost,
less revenue for plastics, etc.

From this analysis we see that for this example setting the fulfilment of
the contracts of cores would lead to a better solution.69 Hence, we assume
that an increase of the penalty cost factor σC in the objective function might
lead to better solutions. Therefore, we repeat the rolling horizon planning.
This leads to a totally different solution, because of the random selection
of quantities to contract. The prices and cost factors over the periods are
identical. The difference here is that even though σC equals one we increase
the penalty costs for cores in our objective function of the planning of the
current period as well as the pre-planning by a factor, e.g., two. The relevant
part of the objective function is then

68
∑20

t=1 r
I
t,1(Q̃

I,expost
t,1 − Q̃I

t,1) = 30(216− 212) + 31(191− 191) + 31(201− 193) + · · ·+
33(187− 183) + 32(186− 168) = 250. See Tables 3.24, 3.35, and 3.40.
69 The contracts of items and material are not completely fulfilled.
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CS
τ =

τ+τ̄−1∑
t=τ

⎡⎢⎣
⎛⎜⎝2σC

∑
c

cAtc

(
QC

tc − Q̃C
tc

)
+ σI

∑
e

rIte

(
DI

te − Q̃I
te

)

+ σR
∑
r

rRtr

(
DR

tr − Q̃R
tr

)
+ σD

∑
d∈{d|QD

td<∞}
cDtd

(
QD

td − Q̃D
td

)⎞⎟⎠
·
(
zt−τ +

zτ̄

τ̄(1− z)

)⎤⎥⎦ . (3.188)

The original one can be found in Eq. (3.142). Surely, the specification for
the factor needs more analysis than just guessing, but for the consideration
here we just want to illustrate the effect.

The gained new solution of the rolling horizon planning results in a profit
of 280,246.93e. Note that the contracted quantities differ, too. This solu-
tion does not have any penalty cost for cores. Hence, the desired effect
is achieved. The ex-post solution for this new example leads to a profit of
318,885.34e.70 This is still more, but the gap is significantly decreased from
51%

(
308962.16
204376.77

)
to 14%

(
318885.34
280246.93

)
. Note that this is only one example and

must be varified with a greater test set. The remaining gap is hardly to
close, because in the ex-post planning the information of all 24 periods is
included whereas the rolling horizon planning considers only five periods.
Hence, a shift of distribution from period three to 17 or vice versa is not
possible in the rolling horizon planning, but entirely possible in the ex-post
planning. The development of revenues, cost, and profit in direct comparison
can be found in Fig. 3.32. The overall tendency equals that of the example
before (see Fig. 3.31). The profit of the rolling horizon planning for the first
period is lower and the profit of the periods four and five is higher than of
the ex-post planning.71 But this is balanced with the profit of later periods.
This balancing is out of scope for the rolling horizon planning, because of
the study horizon of five periods. Hence, there always exists a gap between
the two solutions. And this makes it difficult to identify further possible
improvements.72

70 The MIP gap is 5.45%.
71 Note that the contracted quantities of the first five periods are identical.
72 In appendix B.11 further aspects are considered.
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Fig. 3.32 Comparison between rolling horizon planning and ex-post solution for modi-
fied penalty factor

3.5 Concluding remarks

In this chapter we presented the complete disassembly planning consider-
ing multiple cores, which incorporates aspects of commonality across cores.
We further included material purity aspects, core conditions (functionality,
genuineness, and wrong material), destruction during the disassembly pro-
cess, capacity limitations (e.g., workload and storage), distribution limits,
and supply limits (e.g., guaranteed number of cores). The considered dis-
assembly process not only incorporates recycling but also item distribution
for reuse (either directly or after further processing) and disposal. Thereby,
the disposal is further differentiated into regular and hazardous waste. The
objective of the disassembly planning is the maximisation of the profit.

Starting with the analysis of the approach by Kongar/Gupta, a basic
model is developed that takes the aspects of the disassembly process more
detailed into account.73 This basic model is extended to consider quantity
and price or cost dependencies. Hence, a fundamental market influence is
considered when determining the optimal disassembly plan. Thereby, the
dependencies are either of linear or piecewise linear character to be able

73 Cf. Kongar/Gupta (2006b): Disassembly to order .
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to use standard solver software. In this context, a solution approach for
problems with a continuous concave objective function with saltus in the
first order partial derivatives is developed. The basic model as well as the
extended models are static models.

A fourth approach presented in the context of the complete disassembly
planning is the dynamic planning in form of the rolling horizon planning.
This planning reflects especially the on-going planning with advancing pe-
riods and the inclusion of partly available future information. Furthermore,
this approach is highly suited to deliver decision support for the contract-
ing, which is usually several periods in advance to the actual period. This
so-called pre-planning for the contracting is also suitable for what-if analysis
in terms of utilisation and influence on the profit.

The complete disassembly considered in this chapter is not always the
most profitable one. It could be that it is more profitable if not only a
single disassembly sequence is applied to each unit of a core (e.g., to save
disassembly cost). Moreover, this changing of sequences might be necessary
if different mutual exclusive modules (i.e., consisting of the same items) are
demanded of a core. In this case a more flexible planning is required, which
is subject of the following chapter.



Chapter 4

Flexible disassembly planning

4.1 Introduction

This chapter introduces the considerations of disassembly depth into the
planning aspects of the previous chapter. This means that not only the
availability and condition of cores, the demand of items and material, and
the other considered constraints need to be incorporated. With this exten-
sion that we will focus on in the following, an explicit demand of different
mutual exclusive modules is considered, too. Hence, aspects of multiplicity
and commonality across cores not only apply to items, but also to modules.

When integrating disassembly depth several approaches with different
degrees of freedom are possible. A first is a successive approach where, in
a first step, the disassembly sequencing for each type of core is determined
and afterwards the quantities are planned. This approach is used by Kara/
Pornprasitpol/Kaebernick and Tseng/Chang/Cheng.1 The solu-
tion to the sequencing problem can be determined by diverse approaches
like LP, clustering, graph based, etc.2 Once the sequence is determined the
disassembly planning is conducted. Here, the one optimal sequence leads to
items and modules. The modules can be modelled as items, because they are
not further disassembled. Hence, the approach presented in the preceding
chapter can be used for this optimisation problem. The major disadvantage
of this approach is the adjustment of the two objective functions (i.e., for
sequencing and planning) and the multitude of constraints.

1 Cf. Kara/Pornprasitpol/Kaebernick (2006): Selective disassembly sequencing and
Tseng/Chang/Cheng (2010): Disassembly-oriented assessment methodology .
2 Cf. Lambert/Gupta (2005): Disassembly modeling, pp. 287–335.

C. Ullerich, Advanced Disassembly Planning,
DOI 10.1007/978-3-658-03118-3_4, © Springer Fachmedien Wiesbaden 2014
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To avoid the drawback of determining a suboptimal disassembly sequence
for the subsequent disassembly planning the sequencing can be integrated
in the planning such that they are determined simultaneously. Of course,
this increases the complexity of the planning, but the benefit is the optimal
sequence for the final objective function (e.g., profit maximisation) and all
corresponding constraints. Still, as a result there exists one fix disassembly
sequence for the same type of core.

A more flexible approach is when more than one disassembly sequence
and depth is allowed per core. This means that when, for example, a quan-
tity of two units of one core is acquired, one of them is disassembled with one
sequence and depth and the other one with a different sequence to another
depth. Usually, this flexibility is difficult to realise with automatic produc-
tion systems, but in the disassembling business most is done manually.3

Hence, the disassembly process is highly flexible and this potential should
be used to gain even more profit than with the simultaneous approach.4 As
a matter of course, the planning becomes more complex, but in a business
with low profit margins we deem it beneficial.

This flexible disassembly planning approach is presented in the sequel.
Thereby, we only focus on a static model. As we will see, the inclusion of the
aspects of disassembly depth in conjunction with the core condition leads to
a far more complex problem than with complete disassembly. Nevertheless,
the static flexible planning can be extended to dynamic planning using the
methodology presented in the chapter above.

4.2 Flexible disassembly planning model

4.2.1 Disassembly sequencing

One of the early examples of disassembly sequencing, i.e., determining the
best order of operations to separate a core into its constituent items and
modules,5 is that of the so-called Bourjault’s ballpoint.6 It consists of
six items and is used to illustrate several methods to model the disassembly
process. Usually graphical approaches are suitable to illustrate the structure

3 Cf. Kopacek/Kopacek (2006): Intelligent, flexible disassembly, p. 554.
4 Cf. Bley et al. (2004): Human involvement in disassembly, p. 487.
5 Cf. Ilgin/Gupta (2010): ECMPRO: A review , p. 578.
6 Cf. Lambert/Gupta (2005): Disassembly modeling, p. 171.
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A

B

C

D

EFGH

Fig. 4.1 Connection graph of forklift truck

Table 4.1 Connectivity matrix

item

item A B C D E F G H

A . . . . . . 1 .
B . . . . . . 2 .
C . . . . . . 3 .
D . . . . . . 4 .
E . . . . . 5 . .
F . . . . 5 . 6 .
G 1 2 3 4 . 6 . 7
H . . . . . . 7 .

A dot denotes a value of zero.

of a core. One such rather simple presentation is the connection graph.7 It
shows which items are directly connected with each other.

For our forklift truck example (see Fig. 3.4 on page 46) the corresponding
connection graph (also called liaison graph)8 is the one depicted in Fig. 4.1.
This graph shows all connections between items. This does not mean that
all physical connections are listed. For example, if an item is connected to
another one with two screws and a tongue and groove joint we see it as one
connection between the two items, even though three physical connections
exist. For our considerations this level of detail is sufficient.

The front wheels A and B as well as the rear wheels C and D are connected
with the chassis G. The lift unit F and engine H are also fixed to the chassis.
On the contrary, the fork E is mounted on the lift unit. The graph can also
be stored in a matrix with the same information (see Table 4.1). Here the
connections have a unique ID one through seven. Thereby, the matrix is

7 Cf. Lambert/Gupta (2005): Disassembly modeling, p. 171 and Kwak/Hong/Cho
(2009): Eco-architecture analysis for end-of-life, p. 6252.
8 Cf. Baldwin et al. (1991): Computer aid for generating assembly sequences, p. 81.
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A

B

E

C

D

F

H

G

Fig. 4.2 Precedence graph of forklift truck

symmetric and the main diagonal is zero. This matrix and the connection
graph are a first good way to gain an overview of the structure of the core.
This represents the topological constraints on disassembling the core.9 But
they do not contain all necessary information relevant for the disassembling.
For example, it might be necessary to take off the rear wheels to remove
the engine. With the connection graph or matrix we know that the engine
is fixed to the chassis, but we do not know that we have to take off the rear
wheels first. Such precedence information, which is a geometric constraint,10

is important and therefore needs to be stored somehow. One possibility is
the precedence graph or a list of rules.11 The graph for our example is given
in Fig. 4.2. We see that first items B and E have to be removed before F
can be taken off. The same applies to C, D, and H as well as A, F, H, and
G.

This graph focuses on sequential disassembly. But, we do not consider
only cores where the items are taken off item by item. In our example it is
possible to separate the module EF from the rest. This information is better
given by a list of rules. Each rule of the form “BG not F” can be interpreted
as:

F cannot be in another module or a single item, when item B and
G are together in one module.

9 Cf. Lambert/Gupta (2005): Disassembly modeling, p. 140.
10 Cf. Ibid., p. 154.
11 Cf. Lambert (2006): Optimum disassembly sequence with sequence dependent costs,
pp. 542 et seq., Lambert/Gupta (2005): Disassembly modeling , pp. 206 et seqq., and
Kwak/Hong/Cho (2009): Eco-architecture analysis for end-of-life, p. 6252.
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A

B

C

D

EFGH

Fig. 4.3 Extended connection graph of forklift truck

The list for our example contains the following entries:

• BG not F,
• CG not H, and
• DG not H.

The reader might miss the entry EG not F as pendant to BG not F in
Fig. 4.2. But, the information, that F cannot be separated unless E or G are
removed, is already present in the connection graph in Fig. 4.1. Therefore,
this entry could be added, but it is redundant.

For straightforward cores, like our example, this information can be in-
tegrated in the connection graph. This graph we call extended connection
graph and it is given in Fig. 4.3. Compared to the connection graph (see
Fig. 4.1) three lines are added. These start on the connection of two items
(e.g., between B and G) and end at the item that is blocked by the connec-
tion (e.g., F). These need to be interpreted in a way that the connection
of F and G can only be disconnected if the connection between B and G is
broken up first. The same applies to the other two precedence lines, which
represent geometric constraints for the disassembly process. A third cate-
gory—the technical constraints—can be modelled in the same way as the
geometric constraints.12

To include the disassembly sequences into the planning we need to know
the possible sequences starting with the complete core. Note that we restrict
ourselves to complete cores only in the planning. Since our example shows a
connection graph of a star structure, the number of sequences is high com-
pared to a linearly structured product with only one possible disassembly
sequence. The sequences can be illustrated with a disassembly state graph
(see Fig. 4.4).13 It contains all combinations of items, modules and their dis-

12 Cf. Lambert/Gupta (2005): Disassembly modeling, p. 183.
13 The disassembly state graph equals the sub-assembly state graph as used in disassem-
bly sequencing. Cf. Ibid.
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Fig. 4.4 Disassembly state graph of forklift truck
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assembly path for one core. The complete core is the starting point, because
it is the first module to consider. All paths start from this node and end at
the node where all items are taken off, i.e., the core is completely disassem-
bled. For the following considerations the node representing the complete
core has the index 1.

In Fig. 4.4 the modules are grouped by round brackets and the al-
ready detached items separated by dots. For example a node with the label
“A.B(EF)49(CDGH)32” represents a state of the disassembly with items A
and B taken off—so that they are two single items—and modules EF and
CDGH existing separately. The superscript number denotes the ID of the
module, which will be used later in the modelling for the module definition
matrix. In order to disassemble the core completely one possibility is the fol-
lowing. (The corresponding path to this sequence is highlighted by slightly
thicker arrows in Fig. 4.4.) Firstly, item A is separated by disconnecting
the connection 1, i.e., between items A and G (see Table 4.1). Then con-
nection 2 is disjointed, which separates item B from the remaining module
BCDEFGH. The next operation could be the cutting of connection 6, which
leaves module EF intact but separated from CDGH. After disconnecting the
remaining connections 4, 5, 3, and 7 the core is completely disassembled.

But how is this graph generated from the information we have? Starting
from module one, all connections are tried to disconnect. Within the first
module all seven connections still exist. When separating connection 1 item
A is taken off and the module BCDEFGH remains. Checking with the ge-
ometric (and technical) constraints BG not F, CG not H, and DG not H
we see that none of them applies. Hence the first node in the second level
is created. Now the remaining graph can be created breadth or depth first.
When we choose breadth first, we try to disjoin the next connection, e.g.,
2. This leaves item B separated and the module ACDEFGH. This combi-
nation is feasible and the next node is created. This repeats until we reach
connection 6. Here a combination of two modules ABCDGH and EF would
be generated. Checking the geometric constraints, especially BG not F, we
notice that items B and G appear together in module ABCDGH. If this
occurs, item F must not appear as single item or in another module, like
EF. Therefore, this combination is infeasible and no node is created. The
same applies to connection 7. The topological constraints are not directly
considered, because we use the connections for generating nodes and not ar-
bitrary item and module combinations. Hence, the topological information
coded in the connectivity matrix is directly applied.

Once the second level of the graph is completed, we can continue with
generating the third. Therefore, we choose one node of the preceding level,
e.g., A(BCDEFGH), check what connections are still intact—all but connec-
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tion 1—and try to create nodes based on the separation of one connection.
At most, six nodes could be created out of that one node with six connec-
tions intact. Only four of the possible six nodes are created and we continue
with developing the next nodes based on the second node of the preceding
level. We notice that we would create nodes that already exist. For exam-
ple, the separation of connection one and then two leads to the same result
as first two and then one. Of course, the different sequences might lead to
differences in terms of disassembly time and cost, but since the work is done
mostly manually we assume that the sequence is of marginal influence and
is therefore neglected. In addition, the condition of the core or connections
(like corroded fasteners) leads to a variation of the disassembly time and
cost, which might have a greater influence than the actual sequence. Since,
the result of the sequence is more of interest than the sequence itself, the
two sequences come together in one node, i.e., A.B(CDEFGH). This proce-
dure continues until the complete graph is created, i.e., level eight with a
node representing the complete disassembly is reached.

The disassembly state graph contains one more level than connections
in a core exist. The upper bound of the number of nodes per level can be
calculated based on combinations without repetition. For this bound we
assume a core without any geometric or technical constraints. Then, in the
second level we could create seven nodes. From these seven nodes we could
create 7·6

2 = 21 nodes. The successive levels four through eight could be
created with 35, 35, 21, seven, and one nodes, respectively. Thereby, the
number of nodes for an arbitrary number of connections n per level k is
limited by (

n

k − 1

)
=

n!

(n− k − 1)!(k − 1)!
. (4.1)

Thus, the number of nodes of the complete graph (from level one through
n+ 1) is limited by:14

n+1∑
k=1

(
n

k − 1

)
= 2n . (4.2)

For our example, this means that 27 = 128 is the upper limit of
nodes—not considering the geometric constraints. With the geometric con-
straints the graph results in a size of 60 nodes. Definitively, a better bound
could be found, but this is not subject of matter in this work. More impor-
tant is the number of modules, which are incorporated in the disassembly

14 The binomial theorem states (a+ b)n =
∑n

k=0

(
n
k

)
an−kbk. Cf. Gellert et al. (1965):

Kleine Enzyklopdie – Mathematik , p. 45. Substituting a = b = 1 we get 2n =
∑n

k=0

(
n
k

)
=∑n+1

k=1

(
n

k−1

)
.



4.2 Flexible disassembly planning model 161

planning later. The number of different modules in our example is 50 (see
Fig. 4.4). Note that a single item is no module. A graph only containing
the possible modules is the so-called and/or graph.15 For our example the
and/or graph is depicted in Fig. 4.5.

As in the disassembly state graph the complete core is the top most
node. When removing connection 1 item A is separated from the remaining
module BCDEFGH. The module is represented by a node in the graph,
whereas the single items are not displayed at all. In Fig. 4.5 the path is
highlighted that corresponds to the highlighted path in Fig. 4.4. Disjoining
connection 2 reduces the module by item B to CDEFGH. Now connection 6
is disconnected and two modules result. One is CDGH and the other is EF.
This is an and-relationship, because module CDGH “and” EF result from
this operation.16 Alternatively, which means “or”, the module CDEFGH
can be reduced to DEFGH, CEFGH, or CDFGH. In each level of the graph
the modules with the same length are listed starting from the biggest (with
eight items) down to the smallest (with two items). Hence, the and-operation
causes a skip of several levels in the graph. We follow the dashed line from
node number seven to node number 32 and 49. Node CDGH is stepwise
reduced to CGH and GH. In the end both two-item modules GH and EF
are separated to single items, which is the bottom of the graph. This graph
has as many nodes as modules exist, which is usually less than the number
of nodes of the disassembly state graph. In our example this is 50 (module)
vs. 60 (state) nodes.

Both graphs are suitable to determine the number and composition of all
modules, depending on the items and all relevant constraints. Nonetheless,
both graphs are rather big, even for our fairly small example. The good
news is, that for the planning the modules with their consisting items are
necessary and not the graph as such. This module composition informa-
tion can be generated automatically (i.e., computer based) based on the
connectivity matrix and the constraints. Afterwards, it can also be stored
in a different way than as a graph. For controlling purposes the graph is
a nice tool. The bad news is, that in a worst case the number of modules
still increases exponentially with the number of items. In appendix C.1 a
comparison between a linear and a star structured core can be found, which
illustrates the lower and upper bound of the resulting graph sizes.

15 Cf. Lambert/Gupta (2005): Disassembly modeling, pp. 147 et seqq. and 187.
16 In the example only one connection at each node causes a module split and therefore
it is sufficient to indicate the and-relationship with dashed arrows.
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Fig. 4.5 And/Or graph of forklift truck
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To find an optimal disassembly sequence several approaches exist. They
can be based on petri nets,17 component fastener graphs,18 and/or graphs,19

and even linear programming.20 The graph based approaches are rather
improper to incorporate them with a simultaneous planning with an LP.
The linear programming is a good start, but the approaches found in the
literature determine only one sequence per type of core. We want to be more
flexible with our approach, i.e., we want to be able to determine more than
one sequence or depth per core for the planning. One approach realising this
requirement is presented in the sequel.

To integrate the module information in our planning approach two ma-
trices (or arrays) are necessary (see Table 4.2). One contains the module
definition information, i.e., what items a module consists of. For example,
module m = 37 consists of the items A, D, G, and H. Thus, the values in
the module definition matrix δcmi equal one if this module contains the item
and zero if not. Hence, we observe δc,37,A = δc,37,D = δc,37,G = δc,37,H = 1
for an arbitrary core c and δc,37,B = δc,37,C = δc,37,E = δc,37,F = 0. The
index c is already introduced, because this information is core specific.

The definition of the core is clear. Taking a look at the disassembly state
graph (see Fig. 4.4) we observe that module m = 37 exists twice in the
graph. On the one hand with items B and C as well as module EF and
on the other hand with the single items B, C, E, and F. We notice that
whenever module m = 37 appears in the graph items B and C are always
single items along with it. Therefore, they always appear in addition to the
module. That is why we call them additional items. Items E and F are not
always additional, because they could be kept together as a module EF.
This module m = 49 itself appears several times in the graph. And the only
item it always appears with is item B, which is the only additional item to
module EF.

To illustrate the importance of the additional items matrix let us con-
sider a different example. Let a core consist of four items A–D and we
assume that the disassembly can only be done in two ways. One way is
starting with A, than B, and lastly C and the second way is starting with
D, than C, and lastly B. From the first way the modules BCD and CD
result. Starting the other way, modules ABC and AB can be gained. In the
mathematical programming a decision variable that represents the quantity

17 Cf. Moore/Güngör/Gupta (19998): Petri net approach to disassembly planning.
18 Cf. Zhang/Kuo (1997): Graph-based disassembly sequence planning .
19 Cf. Lambert (2002): Optimum disassembly sequences.
20 Cf. Lambert (1999): Linear programming in disassembly and Lambert (2006): Opti-
mum disassembly sequence with sequence dependent costs.
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Table 4.2 Module definition and additional item matrix

module definition matrix δcmi additional item matrix αcmi

module item item

m A B C D E F G H A B C D E F G H

1 1 1 1 1 1 1 1 1 . . . . . . . .
2 . 1 1 1 1 1 1 1 1 . . . . . . .
3 1 . 1 1 1 1 1 1 . 1 . . . . . .
4 1 1 . 1 1 1 1 1 . . 1 . . . . .
5 1 1 1 . 1 1 1 1 . . . 1 . . . .
6 1 1 1 1 . 1 1 1 . . . . 1 . . .
7 . . 1 1 1 1 1 1 1 1 . . . . . .
8 . 1 . 1 1 1 1 1 1 . 1 . . . . .
9 . 1 1 . 1 1 1 1 1 . . 1 . . . .
10 . 1 1 1 . 1 1 1 1 . . . 1 . . .
11 1 . . 1 1 1 1 1 . 1 1 . . . . .
12 1 . 1 . 1 1 1 1 . 1 . 1 . . . .
13 1 . 1 1 . 1 1 1 . 1 . . 1 . . .
14 1 1 . . 1 1 1 1 . . 1 1 . . . .
15 1 1 . 1 . 1 1 1 . . 1 . 1 . . .
16 1 1 1 . . 1 1 1 . . . 1 1 . . .
17 . . . 1 1 1 1 1 1 1 1 . . . . .
18 . . 1 . 1 1 1 1 1 1 . 1 . . . .
19 . . 1 1 . 1 1 1 1 1 . . 1 . . .
20 . 1 . . 1 1 1 1 1 . 1 1 . . . .
21 . 1 . 1 . 1 1 1 1 . 1 . 1 . . .
22 . 1 1 . . 1 1 1 1 . . 1 1 . . .
23 1 . . . 1 1 1 1 . 1 1 1 . . . .
24 1 . . 1 . 1 1 1 . 1 1 . 1 . . .
25 1 . 1 . . 1 1 1 . 1 . 1 1 . . .
26 1 . 1 1 . . 1 1 . 1 . . . . . .
27 1 1 . . . 1 1 1 . . 1 1 1 . . .
28 1 1 . . 1 1 1 . . . 1 1 . . . 1
29 . . . . 1 1 1 1 1 1 1 1 . . . .
30 . . . 1 . 1 1 1 1 1 1 . 1 . . .
31 . . 1 . . 1 1 1 1 1 . 1 1 . . .
32 . . 1 1 . . 1 1 1 1 . . . . . .
33 . 1 . . . 1 1 1 1 . 1 1 1 . . .
34 . 1 . . 1 1 1 . 1 . 1 1 . . . 1
35 1 . . . . 1 1 1 . 1 1 1 1 . . .
36 1 . . . 1 1 1 . . 1 1 1 . . . 1
37 1 . . 1 . . 1 1 . 1 1 . . . . .
38 1 . 1 . . . 1 1 . 1 . 1 . . . .
39 1 1 . . . 1 1 . . . 1 1 1 . . 1
40 . . . . . 1 1 1 1 1 1 1 1 . . .
41 . . . . 1 1 1 . 1 1 1 1 . . . 1
42 . . . 1 . . 1 1 1 1 1 . . . . .
43 . . 1 . . . 1 1 1 1 . 1 . . . .
44 . 1 . . . 1 1 . 1 . 1 1 1 . . 1
45 1 . . . . . 1 1 . 1 1 1 . . . .
46 1 . . . . 1 1 . . 1 1 1 1 . . 1
47 . . . . . . 1 1 1 1 1 1 . . . .
48 . . . . . 1 1 . 1 1 1 1 1 . . 1
49 . . . . 1 1 . . . 1 . . . . . .
50 1 . . . . . 1 . . 1 1 1 . . . 1

A dot denotes a value of zero.
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of the corresponding modules is introduced for every module. Assuming a
quantity of four units of a core and considering only the module definition
matrix to check whether the items of the modules are disjoint, we could
find a solution like: one module ABC, two modules AB, three modules CD,
and the rest as single items. But even though the items in the modules AB
and CD are disjoint, they cannot be gained at the same time out of a single
core. This information is not stored in the module definition matrix. The
additional item matrix for such a module AB would contain the information
that whenever module AB is gained items C and D appear as single items.
When gaining two modules AB automatically two items of C and D are
gained or have to be gained. Adding another module ABC with D as single
item only one further module CD can result from the fourth unit of a core
with the single items A and B. Hence, the solution given above (1 × ABC,
2 × AB, 3 × CD) is infeasible.

4.2.2 Model extension

4.2.2.1 Objective function and item flow, purity, and limits
constraints

The incorporation of the disassembly sequence generation into the existing
basic model (see Sect. 3.1) with all its aspects of core condition, demand of
material and items, core availabilities, damaging rates, etc. does not require
a structural change of the model. It is rather an extension to the complete-
disassembly model with changes in the objective function as well as in the
constraints. The model structure is displayed in Fig. 4.6. Thereby, in the
figure the condition limitation as in Fig. 3.2 is skipped, because they will be
developed in the sequel. In comparison with the basic model the extensions,
i.e., Y M, Y R, Y D, DM, and QM, become evident and will be discussed in
the following.

When including the distribution of modules in addition to the distribu-
tion of items to reuse the resulting revenues of the modules must be added
to the already considered revenues of items. The second category influencing
the profit directly is the cost. These need to be adapted, too. In comparison
to the complete disassembly we can now save cost (and time) to disassem-
ble particular modules further into items. This is possible, if modules are
demanded, if all consisting items of a module could be placed into the same
recycling box, or if all consisting items of a module would be disposed of.
In these cases it is beneficial to save the cost of disassembling.
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Fig. 4.6 Model structure for flexible disassembly

To determine the cost savings the disassembly cost for each possible mod-
ule is required. But for the cost determination it is not necessary to disas-
semble a core into all its possible modules. It is sufficient to evaluate each
connection that needs to be separated in order to disassemble the core. Of
course, this might not always represent the correct cost, but should give
a good estimation. (It is doubtful that precise cost can be given, because
of manual labour and variations caused by the condition of the item con-
nections.) For all known special cases, the disassembly cost for the module
could be modified afterwards, based on the before calculated values.

Taking a core of four items A through D and assuming that all possible
module combinations of a star configuration exist (with D being the centre)
then three connections hold the core together (see Fig. C.3). Let us assume
that separating the connection AD, BD, and CD costs 1, 2, and 3e, re-
spectively. The cost for disassembling the complete core is 1 + 2 + 3 = 6e,
because all three connections have to be separated. The separation of item
A causes cost of 1e. The disassembly of the remaining module BCD would
cost 2+ 3 = 5e and so on. When we extend this to more than one unit per
core, the following example illustrates the determination of the cost.

Three units of a core are acquired. One unit of those three is disassembled
to module BCD, one to module AD, and the third to module BD. This
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means that the connections BD and CD (first unit), AD (second unit), and
BD (third unit) are still intact. The disassembly cost of the first unit is
1e (separating AD), of the second 2 + 3 = 5e (separating BD and CD),
and of the third 1 + 3 = 4e (separating AD and CD). In total the cost
is 10e for the three units. The same can be calculated by subtracting the
savings from the complete disassembly cost. The savings of the first unit
are 2 + 3 = 5e, because the connections BD and CD are still intact in the
module BCD. Subtracting the savings from the complete disassembly cost of
6e the cost of 1e results. The same applies to the remaining two units. In
the mathematical model we use variables representing the quantities of the
modules still intact. This means that we would have three units acquired,
i.e., QC

c = 3. The complete disassembly cost would be three times 6e, which
is 18e. On the other hand, one unit of module BCD, one of AD, and one
of BD are kept. Subtracting the saved cost (one time 5e, one time 1e, and
one time 2e) from the 18e results in the disassembly cost of 10e.

Continuing the comment from above about different disassembly cost the
illustrative example could be modified as follows. Let us assume that the
separation of item C from the core when connections AD and BD still exist
is more difficult and thus results in higher disassembly cost. Disassembling
the core completely still leads to cost of 6e, because we can freely decide to
start with the connection AD, which is cheaper. Separating connection CD
from the complete core causes for example 3.5e (instead of the 3e), when
connections AD and BD are intact. Since there exist no other (cheaper)
way to get module ABD, the cost saving for this core is set to 2.5e instead
of 3e. Note that the cost to disassemble module ABD completely still is
3e, but the savings are reduced to 2.5e. Out of module ABD the modules
AD and BD can be generated. But, both these modules can also be gained
by other disassembly sequences, which are cheaper. For instance, when first
separating item A and then C the module BD is gained. Module AD is also
the result of separating first item B and then C. In both cases the expensive
separation of CD is avoided. Hence, the saved costs for the modules AD and
BD are still 1e and 2e, respectively. This already indicates that it is as-
sumed to take the cheapest disassembly sequence to the desired disassembly
depth.

Problematic is the case when a connection separation, which leads to
more than one separate modules, is more expensive. An example can be
found in the disassembly state graph in Fig. 4.4 from node “B(ACDEFGH)”
to node “B(EF)(ACDGH)”. The problem is that the modules EF and
ACDGH can be found in other nodes as well. Hence, an individual cost
saving value cannot be set to the node “B(EF)(ACDGH)”, because there
exists only one value for a module independent of its occurrence in any
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node. To be able to model such cases the model has to be modified, which
might be a possibility for future research.

With regard to the flow of items and modules through the disassembly
process, the corresponding constraints have to be extended. For one, the
complete cores going into to disassembly process are the source of items that
can be distributed, recycled, and disposed of. Now they can also be kept
as modules. Nonetheless, the quantity of items in modules and as single
items—regardless if distributed, recycled, or disposed of—must equal the
quantity of items acquired by the cores. The quantity (i.e., the weight)
of material in the recycling boxes and disposal bins is determined by the
quantity of items and modules together with their weight. A new aspect
regarding the item and module flow is the additional items that appear along
with certain modules. The necessary information is given by the additional
item matrix. Depending on the quantity of modules, at least this many
additional single items have to exist, which is indicated by the additional
item matrix. Besides the commonality and multiplicity aspects for items,
these aspects also apply to modules.

In the recycling boxes only the beneficial weight of all items is of interest,
whether it comes from single items or modules does not matter. Hence, a
simple extension by the quantity of modules in the corresponding recycling
box is necessary. The limitation to hazardous items to be either disposed
of or distributed if demanded also applies to the modules. This means that
as soon as one hazardous item exists in a module, the complete module is
treated hazardous. Furthermore, the lower distribution limits as well as the
demand for certain modules is given. And—as with the savings of the disas-
sembly cost—every kept module saves disassembly time, which decreases the
workload required for the disassembly. The complete mathematical model
is presented later in Sect. 4.2.3.

4.2.2.2 Core condition including superordinate modules only

The extension to consider the condition of the core and its consisting items
in the planning with modules requires some explanation. The general as-
sumption for the presented approach is the knowledge about the condition
of the cores, i.e., which fractions to expect (see Fig. 3.3). Thereby, we as-
sume independent probabilities of the condition of each individual item.
This allows us to plan the optimal quantities given the probabilities. Note
that when it comes to disassembling a particular unit of a core, the con-
dition of the consisting items needs to be determined in advance to select
the correct disassembly depth such that the desired quantities of output are
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generated in the end. This is different to the complete disassembly where
the items can be checked afterwards. But with sophisticated test routines,
experience, and the integration of, for example, RFID into the products the
information about the condition of a core increases. Approaches like that of
Ondemir/Gupta go into this direction, too.21

Now with considering modules, the company needs to set policies on
how to handle modules with items and their conditions. For example, a
module might contain a non-genuine item which is still fully functioning
with the remaining items of the module. The question is: should the module
be recycled, disposed of, further disassembled, or can it be distributed as
functioning module. Also, when an item of a module is non-genuine and
consists of the wrong material, does the complete module has to be disposed
of or can it be recycled, etc. In the sequel, we keep the policies rather strictly.
This means, that only modules consisting of genuine and functioning items
can be distributed for reuse. Furthermore, as soon as a module contains
one non-genuine item of the wrong material, the module has to be disposed
of. The same applies to hazardous items in modules, i.e., as soon as one
hazardous item exists in a module it can either be distributed if demanded
or has to be disposed of as hazardous waste.

The fourth aspect with regard to the handling of items is the damaging
during the disassembly process. This is still relevant, but items enclosed
by surrounding items are most likely not damaged. But, the surrounding
items of a module might be damaged during the disassembly process as
single separated items might, too. Since the information—of which item is
a surrounding one and which not—is not given in our approach, we assume
that only the single items that are separated from the modules are dam-
aged during the disassembly process and all items forming a module stay
undamaged. Of course, the property that a module is genuine, functioning,
or recyclable is independent of this. With regard to the single items nothing
changes compared to the basic model with respect to handling based on
the condition and damaging. Let us develop the relevant constraints in the
following.

The number of modules to distribute is limited to those modules that
are genuine and functioning. Hence, all consisting items must be genuine
and functioning. Damaging an item in the resulting module during the
disassembly process is not considered in this approach. Let us further as-
sume—independent of the otherwise given data—that a demand for module
CDGH (m = 32) and DGH (m = 42) exists. In addition, item C is gen-
uine and functioning with a probability of 80% and 62.5%, respectively.

21 Cf. Ondemir/Gupta (2011): Optimal planning for sensor-embedded EoL products.
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This means that item C is genuine and functioning at the same time with
a probability of 80% · 62.5% = 50%. Furthermore, for item D the same
values apply and the items G and H are always functioning and genuine (in
the sequel when we speak of functioning we mean genuine and functioning
at the same time). Given a quantity of 100 units of a core, 50 units of item
C and D as well as 100 units of item G and H are functioning, when consid-
ered separately. Combining the items into a module reduces the number of
modules that are functioning as a whole. For example, a functioning module
CDGH is expected only in 50% ·50% ·100% ·100% = 25% of the cases, i.e.,
25 units out of 100. The module DGH is expected to be functioning in 50%
of the cases, because the 50% chance of item C being non-functioning or
non-genuine is excluded. We see that in total 25 functioning units of module
CDGH and 50 units of module DGH can be gained out of the 100 units of
the core. Hence, the probability for the single items is to be multiplied to
get the required combined probability of the module, when we assume that
the individual probabilities are independent of each other.

In fact, when we decide to take the 25 units of functioning modules
CDGH, we cannot take another 50 units of module DGH as functioning.
Only further 25 units of module DGH can be gained as functioning, because
the other 25 units are part of module CDGH where the functioning part
DGH is still combined with a functioning item C. Therefore, the quantity
of modules where the focussed module is part of must be considered in the
determination of the quantity limit for a module. The modules the focussed
module is part of we call superordinate. For our small example here, the
two restrictions would be that at most

• 25 units of module CDGH (i.e., Y M
c,32 ≤ 25) and

• 50 units of module CDGH together with module DGH (i.e.,
Y M
c,32 + Y M

c,42 ≤ 50)

can be generated. The information that a module is superordinate can be
easily detected in the module definition matrix. All entries δcm̃i of a row
representing a superordinate module m̃ to module m must be greater or
equal than δcmi, i.e., δcmi ≤ δcm̃i ∀ i. Note that m̃ �= m, i.e., a module is
not superordinate to itself. Taking a look at Table 4.2 in row m = 42 of
the module definition matrix we find the values δc,42,i = (00010011). The
values of row 32 are (00110011). We notice that the third element of the
row of m = 32 is greater than that of m = 42 and all other elements are
equal. Thus, module m = 32 is superordinate to module m = 42. But not
only module m = 32 is superordinate. The modules 37, 32, 30, 26, 24, 21,
19, 17, 15, 13, 11, 10, 8, 7, 6, 4, 3, 2, and 1 are superordinate, too. When
excluding the decision variables of those modules that are not demanded at
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all, only the modules of the corresponding core in the sets Rf are relevant.
Rf is the pendant to Pe for demanded modules.∑
m̃∈

{
m̃

∣∣∣∣δcmi≤δcm̃i ∀ i,
(c,m̃)∈⋃

f Rf

}Y M
cm̃ ≤

∏
i∈{i|δcmi=1}

(1−ζci)(1−ηci)Q
C
c ∀ (c,m) ∈

⋃
f

Rf

(4.3)
Depending on the choosing of the quantities of the modules to distribute,

the quantity of functioning items for distribution is influenced in the same
way as explained above. From the small example above, we remember that
item C as well as D are functioning in 50% of the cases and items G and H
always. When selecting 25 units of module CDGH and 25 units of module
DGH, no more functioning modules are expected. This leaves us with 25
units of item C and 50 units of item D from the 100 possible. We notice
that still 25 units of item C are functioning and could therefore be used for
item distribution. But, when disassembling items we included a possibility
that this item is damaged. The corresponding rate is denoted by θci. Let us
further assume the damage rate for item C in the process is 40%. In this
case only 60% of the 25 reamining functioning items are undamaged after
the disassembly process. This makes 15 items C to be used for distribution
in addition to the selected modules.

To include this in our model formulation we develop the constraint step
by step as motivated above. The quantity of items to be distributed (XI)
is limited by the totally available genuine (1 − ζ) and functioning (1 −
η) items in the quantity of cores (QC) less the genuine and functioning
items in the superordinate modules to be distributed (Y M).22 From those
remaining items a fraction of θ is damaged in the disassembly process, i.e.,
XI ≤ (

(1− ζ) (1− η)QC − Y M
)
(1− θ). Transforming this expression leads

to XI + (1− θ)Y M ≤ (1− ζ) (1− η) (1− θ)QC. This consideration is only
necessary for items that are demanded (i.e., elements of Pe). The relevant
modules are also only the demanded ones (i.e., elements of Rf ), because
all other quantity variables Y M

cm will be set to zero (see Eq. (4.88)). After
adding the indices and the necessary confinements the constraint results in

XI
ci + (1− θci)

∑
m∈

{
m

∣∣∣∣ δcmi=1,
(c,m)∈⋃

f Rf

}Y M
cm ≤ (1− ζci)(1− ηci)(1− θci)Q

C
c

∀ (c, i) ∈
⋃
e

Pe . (4.4)

22 Superordinate means here that the module contains the item.
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In the basic model constraint (3.9) assured that all items, which are
non-genuine and of the wrong material, are disposed of. This was modelled
by a lower bound of XD

cid in relation to QC
c . The same information can be

modelled by giving an upper bound for XI
ci together with XR

cir in relation to
QC

c , because if an item is not disposed of, it is either distributed or recycled.
This view is adopted in the sequel to limit the quantity of modules and items
for distribution and recycling, because of items that are non-genuine and of
the wrong material. In general, the constraint is developed like in Eq. (4.3).

Let us assume a core consisting of three items A, B, and C. With a
probability of P (A) = 0.6 item A is non-genuine and of the wrong ma-
terial. This value is already the combination (i.e., multiplication) of the
probabilities ζci and ιci for some arbitrary core c and item A. The corre-
sponding probabilities for item B and C are P (B) = 0.2 and P (C) = 0.4.
The probability that the complete core is non-genuine and of the wrong
material, i.e., all three items are non-genuine and of the wrong material,
is 0.6 · 0.2 · 0.4 = 0.048. On the other hand, the probability that all three
items in the core are non-genuine and recyclable or genuine (i.e., the total
opposite case) is (1− P (A))(1− P (B))(1− P (C)) = 0.4 · 0.8 · 0.6 = 0.192.
Many more combinations of item conditions exist where only one or two
items are of wrong material. These combinations have in common that at
least one item is non-genuine and of wrong material for recycling. According
to the selected policy (see section above), as soon as there exists one wrong
material item in a module the module has to be disposed of. Hence, with a
probability of 1− 0.192 = 0.808 the module has to be disposed of. In other
words, only with a probability of 0.192 a module of the items A, B, and C
can be used for distributing or recycling.

When an item (e.g., C) is separated from the module ABC the module
AB remains. With a probability of (1− P (A))(1− P (B)) = 0.4 · 0.8 = 0.32
this item combination can be used for distributing or recycling, because none
of the two items is non-genuine and of the wrong material. This probability
calculation can be continued down to the single items. When we acquire
250 units of a core, we expect a fraction of 0.192 of them to be usable for
distribution or recycling, because of the above calculated probability. This
means we expect 250 · 0.192 = 48 cores. If we disassemble all 250 cores
into modules AB and a single item C, the number of usable modules AB
increases to 250 · 0.32 = 80, because the probability of item C has no effect
on this module AB anymore. Of the 250 single items C, 250 · (1− P (C)) =
250 · 0.6 = 150 are usable. So we observe the effect, that the quantity of
modules that do not have to be disposed of increases with smaller modules,
i.e., the more the cores are disassembled.
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Table 4.3 Flexible disassembly policy

item quantity

module quantity item A item B item C
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(ABC) 48 48 45 3 20 — — — — — —
A(BC) 120 75 50 25 40 5 85 — — — —
B(AC) 60 15 15 0 10 — — 5 20 — —
C(AB) 80 35 30 5 25 — — — — 40 15
A.B.C — — — — — 0 15 15 0 0 15

max. for distribution & recycling 100 200 150
selected for distribution & recycling 95 145 150
unused for distribution & recycling 5 55 0

So far we considered the same treatment for all 250 units of a core. But
this is not flexible. In order to be a flexible disassembly policy with several
disassembly depths—which we consider here—a policy like the following
must be feasible (see Table 4.3). The disassembly depth is given in the style
of the disassembly state graph, i.e., modules are in braces and several items
separated by dots. 65 of the 250 cores are not disassembled at all. 45 of
them are intended for recycling (distribution and recycling are subsumed
to recycling in the sequel) and 20 for disposal. This leaves three units open
until the limit of 48 is reached. The limit is given by the probability that the
module ABC is free of any item that is non-genuine and of wrong material. In
addition, 90 units of the core are disassembled such that item A is separated
and module BC remains. From these 90 units, 50 are intended for recycling,
while the limit for recycling is 75 units. If no module ABC is selected for
recycling, the 120 units will be the limit. With the 45 units of ABC also 45
units of module BC with recyclable or genuine items are gone, because BC
is a subset of ABC.

With this 90 units of module BC, 90 units of item A are generated.
Depending on the condition and appearance in other modules these 90 units
need to be split into items for recycling and disposal. We select five units for
recycling and 85 for disposal. This continues with 15 and 30 units selected
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Table 4.4 Flexible policy – solution

Y R
ABC = 45 Y D

ABC = 20 XR
A = 5 XD

A = 100

Y R
BC = 50 Y D

BC = 40 XR
B = 20 XD

B = 20

Y R
AC = 15 Y D

AC = 10 XR
C = 40 XD

C = 30

Y R
AB = 30 Y D

AB = 25

for recycling of module AC and AB, respectively, as well as ten and 25 units
for disposal of module AC and AB, respectively. In total 235 modules with
their corresponding items are disassembled, which leaves 15 units of the
core to be disassembled completely. The resulting single items need to be
allocated to recycling or disposal, which can be seen in the row A.B.C in
Table 4.3.

95 of the 100 recyclable or genuine items A (from the 250 units) are
included in 45 units of module ABC, 15 units of AC, and 30 units of AB
and five further units are selected parallel to module BC. This leaves five
units of the 100 items unused for recycling. The same applies to item B and
C with 55 and zero units unused for recycling. Transforming the policy into
values for decision variables results in the following solution (see Table 4.4).
Thereby, Y R

ABC denotes the quantity of modules ABC chosen for recycling
(and distribution) and Y D

ABC for disposal. The variables XR
A and XD

A denote
the values for the item A for recycling and disposal, respectively. In addition,
the quantity of the core is QC = 250.

From the discussion we derive that the superordinate modules need to be
considered, too. This means, the value of Y R

ABC has influence on the limit of
Y R
BC, Y

R
AC, Y

R
AB, X

R
A , X

R
B , and XR

C . In a general formulation this is expressed
by

∑
m̃∈

{
m̃

∣∣∣∣ δcmi≤δcm̃i ∀ i,
(c,m̃)∈{1,...,Mc}

}

(
Y M
cm̃ +

∑
r

Y R
cm̃r

)
≤

∏
i∈{i|δcmi=1}

(1− ζciιci)Q
C
c

∀ c,m ∈ {1, . . . ,M c} (4.5)

for modules, where M c denotes the number of modules of core c, and by

∑
r

⎛⎝ Mc∑
m=1

δcmiY
R
cmr +XR

cir

⎞⎠+

Mc∑
m=1

δcmiY
M
cm +XI

ci ≤ (1− ζciιci)Q
C
c

∀ c, i ∈ {1, . . . , Īc} (4.6)
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Table 4.5 Module definition for core ABC

module m item A item B item C

ABC 1 1 1
BC 0 1 1
AC 1 0 1
AB 1 1 0

for the single items.
To illustrate the constraints we continue with the example above. We

have four modules and three single items. The probabilities ζ · ι are 0.6, 0.2,
and 0.4 for the items A, B, and C, respectively. The module definition values
are listed in Table 4.5. The four constraints for the modules (see Eq. (4.5))
are:

ABC: Y R
ABC ≤ (1− 0.6)(1− 0.2)(1− 0.4)QC, (4.7)

BC: Y R
ABC + Y R

BC ≤ (1− 0.2)(1− 0.4)QC, (4.8)

AC: Y R
ABC + Y R

AC ≤ (1− 0.6)(1− 0.4)QC, and (4.9)

AB: Y R
ABC + Y R

AB ≤ (1− 0.6)(1− 0.2)QC. (4.10)

For the three single items the constraints (see Eq. (4.6)) result in:

A: Y R
ABC + Y R

AC + Y R
AB +XR

A ≤ (1− 0.6)QC, (4.11)

B: Y R
ABC + Y R

BC + Y R
AB +XR

B ≤ (1− 0.2)QC, and (4.12)

C: Y R
ABC + Y R

BC + Y R
AC +XR

C ≤ (1− 0.4)QC. (4.13)

Substituting the variables by their values (see Table 4.4) results in:

ABC: 45 = 45 ≤ 48 = (1− 0.6)(1− 0.2)(1− 0.4)250,
(4.14)

BC: 45 + 50 = 95 ≤ 120 = (1− 0.2)(1− 0.4)250, (4.15)

AC: 45 + 15 = 60 ≤ 60 = (1− 0.6)(1− 0.4)250, (4.16)

AB: 45 + 30 = 75 ≤ 80 = (1− 0.6)(1− 0.2)250, (4.17)

A: 45 + 15 + 30 + 5 = 95 ≤ 100 = (1− 0.6)250, (4.18)

B: 45 + 50 + 30 + 20 = 145 ≤ 200 = (1− 0.2)250, and (4.19)

C: 45 + 50 + 15 + 40 = 150 ≤ 150 = (1− 0.4)250, (4.20)
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which is definitely feasible. An increase of AC or C is impossible according
to these constraints, which can also be seen in Table 4.3 in row B(AC) and
column five (unused units) as well as column C and the last row.

But this is not all of the necessary constraints. The following new ex-
ample shall illustrate a case where an infeasible solution occurs with the
given constraints. We use a core ABCD and focus just on the functioning
probability to keep the explanation straightforward. All items that are not
functioning can only be used for recycling. (The wrong material condition
is neglected for the moment.) The probabilities that item A, B, C, and D
are functioning are 0.25, 0.4, 0.5, and 0.8, respectively. Let us assume the
following solution. Four units of module ABCD, 12 units of module BCD,
and eight units of item A are planned for distribution. In addition, 84 units
of module ABCD as well as four units of item A are intended for material
recycling. Adding the quantities of the items (single and in modules) we find
that 100 units of that particular core are required. Given the probabilities
(see above) for the items being functioning—and neglecting any wrong ma-
terial and damaging—the relevant condition constraints regarding the five
planned quantities are the following. From Eq. (4.3) we get

Y M
ABCD ≤ 0.25 · 0.4 · 0.5 · 0.8QC ⇒ 4 ≤ 0.04 · 100

(4.21)

Y M
ABCD + Y M

BCD ≤ 0.4 · 0.5 · 0.8QC ⇒ 4 + 12 ≤ 0.16 · 100
(4.22)

and from Eq. (4.4)

XM
A + Y M

ABCD + Y M
BCD ≤ 0.25QC ⇒ 8 + 4 ≤ 0.25 · 100 .

(4.23)

As we see they are all feasible. However, taking a closer look at the
solution we notice that the solution is indeed infeasible. Of the 100 available
units 16 functioning units of module BCD exist (0.4 · 0.5 · 0.8 = 0.16). The
probability that item A is functioning is one fourth. Hence, considering the
functioning 16 units of module BCD four of them come with a functioning
item A and 12 without. The four functioning items are used to keep the
functioning module ABCD and the other 12 have to be recycled, because
they are not functioning. In addition, 84 modules ABCD (i.e., including item
A) are recycled, regardless of an item A being functioning or not. Adding
the quantities of item A we have already 100 units and no possibility to
gain another eight units for distribution, because they are all caught in the
recycled units of module ABCD. Even though the given solution is feasible
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Table 4.6 Expected item conditions in 100 units of the exemplary core

posi- item posi- item posi- item

tion A B C D tion A B C D tion A B C D

1 • • • • 36 ◦ ◦ • • 71 ◦ ◦ ◦ •
2 • • • • 37 ◦ ◦ • • 72 ◦ ◦ ◦ •
3 • • • • 38 ◦ ◦ • • 73 ◦ ◦ ◦ •
4 • • • • 39 ◦ ◦ • • 74 ◦ ◦ ◦ •
5 ◦ • • • 40 ◦ ◦ • • 75 ◦ ◦ ◦ •
6 ◦ • • • 41 • • ◦ • 76 ◦ ◦ ◦ •
7 ◦ • • • 42 • • ◦ • 77 ◦ ◦ ◦ •
8 ◦ • • • 43 • • ◦ • 78 ◦ ◦ ◦ •
9 ◦ • • • 44 • • ◦ • 79 ◦ ◦ ◦ •
10 ◦ • • • 45 ◦ • ◦ • 80 ◦ ◦ ◦ •
11 ◦ • • • 46 ◦ • ◦ • 81 • • • ◦
12 ◦ • • • 47 ◦ • ◦ • 82 ◦ • • ◦
13 ◦ • • • 48 ◦ • ◦ • 83 ◦ • • ◦
14 ◦ • • • 49 ◦ • ◦ • 84 ◦ • • ◦
15 ◦ • • • 50 ◦ • ◦ • 85 • ◦ • ◦
16 ◦ • • • 51 ◦ • ◦ • 86 ◦ ◦ • ◦
17 • ◦ • • 52 ◦ • ◦ • 87 ◦ ◦ • ◦
18 • ◦ • • 53 ◦ • ◦ • 88 ◦ ◦ • ◦
19 • ◦ • • 54 ◦ • ◦ • 89 ◦ ◦ • ◦
20 • ◦ • • 55 ◦ • ◦ • 90 ◦ ◦ • ◦
21 • ◦ • • 56 ◦ • ◦ • 91 • • ◦ ◦
22 • ◦ • • 57 • ◦ ◦ • 92 ◦ • ◦ ◦
23 ◦ ◦ • • 58 • ◦ ◦ • 93 ◦ • ◦ ◦
24 ◦ ◦ • • 59 • ◦ ◦ • 94 ◦ • ◦ ◦
25 ◦ ◦ • • 60 • ◦ ◦ • 95 • ◦ ◦ ◦
26 ◦ ◦ • • 61 • ◦ ◦ • 96 • ◦ ◦ ◦
27 ◦ ◦ • • 62 • ◦ ◦ • 97 ◦ ◦ ◦ ◦
28 ◦ ◦ • • 63 ◦ ◦ ◦ • 98 ◦ ◦ ◦ ◦
29 ◦ ◦ • • 64 ◦ ◦ ◦ • 99 ◦ ◦ ◦ ◦
30 ◦ ◦ • • 65 ◦ ◦ ◦ • 100 ◦ ◦ ◦ ◦
31 ◦ ◦ • • 66 ◦ ◦ ◦ •
32 ◦ ◦ • • 67 ◦ ◦ ◦ •
33 ◦ ◦ • • 68 ◦ ◦ ◦ •
34 ◦ ◦ • • 69 ◦ ◦ ◦ •
35 ◦ ◦ • • 70 ◦ ◦ ◦ •

The “•” indicates a functioning item and “◦” a non-functioning one.

according to the condition constraints developed so far it is not feasible,
because there exist dependencies that go beyond the superordinate modules.

4.2.2.3 Core condition using graphs with two usage options

To illustrate the following discussion all expected item combinations for the
100 units of the core ABCD (from above) are displayed in Table 4.6.23 The
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value “•” indicates a functioning item and “◦” a non-functioning, which can
only be used for recycling. From core position 1–4 the functioning module
ABCD is taken. Position 5–16 is used for distributing module BCD. The
recycling of 84 units of module ABCD are the remaining positions 17–100.
However, there is no position left to gain the eight functioning units of item
C for distribution.

In order to find a feasible solution based on the given solution several
options exist. These are:

1. reduce XI
A (and increase XR

A ) maximal by eight,
2. reduce Y M

BCD (and increase Y R
BCD) maximal by eight,

3. reduce Y M
ABCD (and increase Y R

ABCD or increase Y M
BCD and XR

A ) maximal
by four, and

4. any combination of the above mentioned options.

With option one and two the infeasibility can be cancelled completely. How-
ever, option three can only be used four times, because no more than four
units of a functioning module ABCD exist. The missing four units need to
be compensated with by option one or two. What we see here is that there
exist more than one option to find a feasible solution and that once, e.g.,
ABCD is used to gain BCD the same unit cannot be used for gaining a unit
if ACD anymore.

Before we continue we illustrate the Table 4.6 in Fig. 4.7. Each node
represents the percentage of units of the core with only these items func-
tioning that are black in the node label. For example, node ABCD indicates
that 4% of the units of the core have functioning items A, B, and D and
a non-functioning item C. (This equals positions 41–44 in Table 4.6.) Node
ABCD means that in 4% of the units a unit of a core comes in with all
items functioning (positions 1–4 in the table) and node ABCD represents
the core with no functioning item (positions 97–100 in the table). Adding
all percentages, results in 100%. Note that only the two classes functioning
and non-functioning are discussed for now.

The edges of the graph connect the nodes with non-negative flows.24

In addition, each node inputs the given percentage into the graph for a
given quantity of incoming cores. For example, if 100 units of the core are

23 The expected number of units of functioning item combination A and C is 0.25 · 0.5 =
0.125, which is 12.5 units of the 100 cores. Therefore an alternative listing with one unit
more of functioning A and C combination and one unit less of only functioning C in a
core is possible, too. The change only effects position 86 and 96 of the listing.
24 Even though the following graphs are non-weighted and directed graphs with arrows
or directed arcs or edges, they are simply called graphs with nodes and edges. A further
distinction is not necessary for the considered problem.
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Fig. 4.7 Condition dependencies core graph (2 classes, 4 items)

acquired, six units with functioning items A and D as well as non-functioning
items B and C will be expected. This is the input of node ABCD, namely
100 · 6% = 6. Moreover, the output (besides the edges) of each node is
the quantity that can be used for item distribution as well as recycling
(and disposal). Thereby, node ABCD can be used for everything, i.e., item
and module distribution as well as recycling (and disposal), whereas node
ABCD can only be used for distributing items A and B, module AB, and
recycling any module and item combination of A, B, C, and D. Having
one unit of core ABCD and one of ABCD gives the option to use ABCD
and ABCD as they are or as two units of ABCD. This option needs to be
modelled by the edges in the graph. Starting from node ABCD the nodes
ABCD, ABCD, and ABCD are superior with respect to the condition. This
means that any quantity of superior cores can be used for the one in focus.
But, once a superior unit is used, it cannot be used for another node. For
example, if one unit of ABCD is used as ABCD, the same unit cannot
be used for ABCD. However, the superior core ABCD to ABCD does not
have to be considered directly. It is considered recursively, because ABCD
is also superior to ABCD. Thus, only the next superior core needs to be
considered.25

25 The property of being superior is transitive, because ABCD is superior to ABCD and
ABCD is superior to ABCD and therefore ABCD is superior to ABCD, too.
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Let us denote the flow between the nodes of this core graph with ZC
vṽ from

node v to node ṽ. We see that the number of nodes equals the number of
all item combinations (here functioning and non-functioning), i.e., 2Ī with
Ī being four in this small example. From each node an edge per changeable
item exists. In node ABCD items A and B can be changed from functioning
A and B to non-functioning A and B, which leads to the nodes ABCD and
ABCD, respectively. (These are edges to the left in the figure.) In addition,
either item C or D was changed to get to the node ABCD from ABCD or
ABCD. Hence, each node in the graph has four edges (ingoing and outgoing
together). Since they are counted double if added, the number of edges in
the graph is limited to the number of nodes multiplied by the number of
items and divided by two, i.e., 2Ī−1Ī.

The output of a node is denoted by V C
v . The input of a node depends

on the quantity of cores QC and the condition probabilities. For example,
with QC = 100 units of the core the input of node ABCD is 0.25 · 0.4 (1 −
0.5)(1− 0.8)QC = 1.26 For each node v a constraint needs to be formulated
to represent the above described behaviour. Everything that goes into a
node (e.g., ABCD) from superior nodes (e.g., ABCD and ABCD) plus the
input (e.g., ρABCDQ

C) must equal the output (e.g., V C
ABCD) and the flow

to subordinate nodes (e.g., ABCD and ABCD). Thereby, ρv denotes the
percentage of units of this core represented by node ABCD.

ZC
ABCD,ABCD + ZC

ABCD,ABCD + V C
ABCD

= ρABCD QC + ZC
ABCD,ABCD + ZC

ABCD,ABCD (4.24)

The edges of the core graph can also be represented by a matrix EC
vṽ.

An entry equalling one represents an edge. The resulting matrix is a lower
triangle matrix with blocks (see Table 4.7).

This matrix is easily constructed by focusing on the functioning items.
Each row has a value of one in those columns where the number of func-
tioning items is one less than in the focussed row and the functioning items
of the column are a subset of these in the row. To illustrate this, we have
a look at row ABCD. In this row the items A, B, and C are functioning.
Hence, the number of functioning items is three in this row. An entry of one
can only exists in the columns with one less functioning items, i.e., column
ABCD, ABCD, ABCD, ABCD, ABCD, and ABCD. Of these six columns
only the columns ABCD, ABCD, and ABCD have functioning items that

26 This would equal the term [(1−ζA)(1−ηA)] [(1−ζB)(1−ηB)] [1− (1−ζC)(1−ηC)] [1−
(1−ζD)(1−ηD)]QC, because (1− ζi)(1− ηi) is the probability of a functioning item.
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Table 4.7 Matrix representation of core graph edges

core graph edges EC
vṽ

node ṽ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

ABCD

ABCD 1

ABCD 1 .

ABCD 1 . .

ABCD 1 . . .
ABCD . 1 1 . .

ABCD . 1 . 1 . .
ABCD . 1 . . 1 . .

ABCD . . 1 1 . . . .

ABCD . . 1 . 1 . . . .

ABCD . . . 1 1 . . . . .
ABCD . . . . . 1 1 . 1 . .

ABCD . . . . . 1 . 1 . 1 . .

ABCD . . . . . . 1 1 . . 1 . .

ABCD . . . . . . . . 1 1 1 . . .

ABCD . . . . . . . . . . . 1 1 1 1

Dots denote a value of zero and white spaces are not of interest. Only the framed blocks
of cells can have a value other than zero.

are a subset of ABC. Hence, the three entries equalling one in the row are
fixed and all other values are zero.

Using this matrix EC
vṽ the constraints can be formulated by∑

ṽ∈{ṽ|ṽ<v,EC
vṽ=1}

ZC
vṽ + V C

v = ρv Q
C +

∑
ṽ∈{ṽ|ṽ>v,EC

ṽv=1}
ZC
ṽv ∀ v . (4.25)

With these constraints the core graph assures that whenever 96 units ABCD
are recycled completely (i.e., without disassembly), only four units of the
core can be used for anything else.

This core graph alone is not sufficient to model the possibilities of the
flexible disassembly considering the conditions. Another graph (or another
layer to the existing graph) is necessary. This extra graph is necessary to
express the disassembly options that exist. For example, in the core graph
the node ABCD represents the core with all four items being functioning.
Such an item combination can be used for everything. This means that
it can be used for distribution and recycling (this is modelled in the core
graph). In addition, it can be used to gain a complete functioning core and
any arbitrary module and item combination—down to the four single items
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A, B, C, and D just from one unit. The latter aspect is not modelled by the
core graph.

The extra graph is called distribution graph and it focusses only on the
functioning items. Therefore, the nodes from the core graph are used and
labelled only with the functioning items (see Fig. 4.8). The nodes with func-
tioning items are connected by edges. Thereby, the edges already existing
in the core graph are the solid ones.27 A dash-dot edge is an edge that is
added to a solid edge. The third type of edge is the dashed one. These edges
are completely new. (The different line types have no specific meaning they
are only for illustration.) The nodes need to be connected in a way that all
possible partitions of a single completely functioning unit of the core are
displayed. In the figure each starting edge from a node (e.g., ABCD) splits
up into two edges (e.g., AB and CD or ABC and D). This is caused by the
partition of the node.

To illustrate this, we consider a completely functioning unit ABCD. The
input into the node ABCDis one, i.e., V C

ABCD = 1, which is the output of the
core graph. This unit can be separated into ABC and D. Both, module and
item exist with one unit parallel. The module ABC can further be separated
into A and BC. If we stop here, we have one functioning module BC and two
functioning items A and D. (The same can be gained by following a different
path through the graph.) If we want only a functioning module ABC and D
for recycling, the completely functioning core could be seen as a core with
non-functioning item D. This is achieved by shifting the one unit from node
ABCD in the core graph to node ABCD and set the output V C

ABCD = 1 and

V C
ABCD = 0. Thus, the input of one unit into the distribution graph appears

in node ABC (and not ABCD). And because of this, only the functioning
items A, B, and C can be used. Item D is targeted for recycling which will
be considered later.

The edges of the graph can also be represented by a lower triangle ma-
trix (see Table 4.8). The edges are denoted by EI

ww̃. The node index is w
to illustrate the difference of this graph to the core graph. (Later this is
necessary, but for now the indices w and v are identical in principle). In this
matrix not only two values exist. The value 0 (or “.”) represents the case
with no connection between the nodes and the values 1 through 15 represent
an edge. The edges are not weighted so that the values greater than 1 have
a different meaning. Taking row ABC we find the values 1, 1, 1, 4, 3 and 2.
This means that in total six edges or three pairs of edges emerge from node
ABC. Each edge pair is identified by an edge with a value of 1 and one with
a value greater than 1 (being a node index). To find a pair, an arbitrary

27 Some of them are combined to one edge.
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Table 4.8 Matrix representation of distribution graph edges

distribution graph edges EI
ww̃

node w̃

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
w ∅ A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 ∅
2 A .
3 B . .
4 C . . .
5 D . . . .
6 AB . 1 2 . .
7 AC . 1 . 2 . .
8 AD . 1 . . 2 . .
9 BC . . 1 3 . . . .
10 BD . . 1 . 3 . . . .
11 CD . . . 1 4 . . . . .
12 ABC . 1 1 1 . 4 3 . 2 . .

13 ABD . 1 1 . 1 5 . 3 . 2 . .
14 ACD . 1 . 1 1 . 5 4 . . 2 . .
15 BCD . . 1 1 1 . . . 5 4 3 . . .

16 ABCD . 1 1 1 1 1 1 1 8 7 6 5 4 3 2

Dots denote a value of zero and white spaces are not of interest. Only the framed blocks
of cells can have a value other than zero.

value EI
ww̃ greater than one in the focussed row w is selected. Hence, one

edge goes from node w to the node with the column index w̃ the selected
value EI

ww̃ > 1 is in. The second edge of this pair is the one from w to the
node EI

ww̃, whose index equals the selected value. This column is marked
by the value 1. Coming back to row w = 12, i.e., ABC, a first value greater
than 1 is EI

ww̃ = 4 in column w̃ = 6. This means, that one edge of the edge
pair goes to node 6 and the other to node 4. Both edges start from the same
node w = 12. The other two edge pairs got to node 7 and 3 as well as 9 and
2. This concept is equivalent to that of a hypergraph.28

The property of the edge pairs is that they have to have the same flow
through the edges. This is assured by constraints that set the values of the
relevant flow variables equal (see below). The matrix is generated in the
following way. The rows are independent of each other so that we pick an
arbitrary row, e.g., w = 12 (ABC). We select a column w̃ that represents a
node with a non-empty strict subset of functioning items of the row (that
has not been fixed before). Hence, the columns w̃ = 1 (∅) and all columns
with w̃ ≥ w are always skipped. Possible columns are w̃ ∈ {2, 3, 4, 6, 7, 9}.
We choose column w̃ = 2 (A). In this column of the row we set the value
to EI

ww̃ = 1. The disjoint set of functioning items to this selected column

28 Cf. Borndörfer et al. (2012): Vehicle rotation planning .
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in the focussed row we find in column ŵ = 9 (BC). In this column ŵ of the
focussed row we store the value of the first column index, i.e., EI

wŵ = w̃ = 2.
In the focussed row, columns two and nine are fixed. The next column to
select is one of w̃ ∈ {3, 4, 6, 7}. This procedure continues until all columns
in the row are processed and all rows with at least two functioning items
are considered.

Before we continue with the formulation of the constraints, the size of
the graph is discussed. The number of nodes is limited to one less compared
to the core graph, i.e., 2Ī − 1. The number of edges is based on the number
of two-set partitions of the functioning items of a node. A node with k
items can be separated into 2k−1 partitions. This includes the partition of
the empty set and the complete set of k items. Only partitions with non-
empty sets are of interest, because there is no edge to the node w = 1
(∅). In each two-set partition, obviously, two sets exist, which results in
2 ·(2k−1 − 1

)
= 2k−2 sets (excluding the empty set partition). The number

of combinations without repetition of k items out of n is
(
n
k

)
= n!

k!(n−k)! .

Combining the number of outgoing edges per node and the number of nodes
leads to

Ī∑
k=2

(
Ī

k

)(
2k − 2

)
=

Ī∑
k=2

Ī!

k!
(
Ī − k

)
!

(
2k − 2

)
. (4.26)

The number of items is given by Ī and the first level to consider is that of
two items per node, because there exist no outgoing edges from the nodes 1
through 5. According to the binomial theorem (a+ b)n =

∑n
k=0

(
n
k

)
an−k bk

and choosing a = 1 and b = 2 we get29

n∑
k=0

(
n

k

)
2k = 3n . (4.27)

If we subtract two times 2n on both sides of the equation

n∑
k=0

(
n

k

)
2k − 2 · 2n = 3n − 2 · 2n (4.28)

and replace 2n by
∑n

k=0

(
n
k

)
we get

29 Cf. Gellert et al. (1965): Kleine Enzyklopdie – Mathematik , p. 45.
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n∑
k=0

(
n

k

)
2k − 2

n∑
k=0

(
n

k

)
= 3n − 2 · 2n (4.29)

n∑
k=0

(
n

k

)(
2k − 2

)
= 3n − 2n+1 . (4.30)

Adding one on both sides leads to

n∑
k=0

(
n

k

)(
2k − 2

)− 1 (1− 2) = 3n − 2n+1 + 1 (4.31)

n∑
k=0

(
n

k

)(
2k − 2

)− (
n

0

)(
20 − 2

)
= 3n − 2n+1 + 1 (4.32)

n∑
k=1

(
n

k

)(
2k − 2

)
= 3n − 2n+1 + 1 (4.33)

and subtracting zero leads to

n∑
k=1

(
n

k

)(
2k − 2

)− (
n

1

)(
21 − 2

)
= 3n − 2n+1 + 1− 0 (4.34)

n∑
k=2

(
n

k

)(
2k − 2

)
= 3n − 2n+1 + 1 . (4.35)

Replacing n by Ī results in the number of edges of

3Ī − 2Ī+1 + 1 (4.36)

for the distribution graph.
The distribution graph is the interface between the core graph and

planned quantities of functioning items and modules. Therefore, the out-
put of the graph equals the XI

i for the nodes 2 through 5 and Y M
m for the

nodes 6 through 16. The input of the nodes of the distribution graph is the
output of the core graph. Thus, the flow through the node w = 12 (ABC)
can be described as

ZI
ABC,AB + ZI

ABC,AC + ZI
ABC,BC + ZI

ABC,A + ZI
ABC,B + ZI

ABC,C + 2Y M
ABC

= 2V C
ABCD + 2ZI

ABCD,ABC . (4.37)
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Thereby, ZI
ww̃ denotes the flow through the edges. The factor two on the

input side is necessary, because the outgoing edges appear in pairs and in
each edge of the pair the same quantity goes in. For example, one unit
from node ABCD ZI

ABCD,ABC (distribution graph) or one unit from the

core graph V C
ABCD result in one unit each to AB and C or AC and B or

BC and A or as output Y M
ABC. In order to gain only one unit of output the

corresponding variable also needs to be multiplied with two. In addition, the
equality of the flows of the edge pairs must also be expressed. The equations
for the three pairs are

ZI
ABC,AB = ZI

ABC,C (4.38)

ZI
ABC,AC = ZI

ABC,B (4.39)

ZI
ABC,BC = ZI

ABC,A . (4.40)

The exemplary equations need to be formulated in a general way. On
the left side of Eq. (4.37) the edges go from the focussed node w to those
nodes, where an entry greater than zero exists in the matrix EI

ww̃ in row w̃.
Thereby, only the column indices less than the index of the row w̃ need to
be considered. Here, both edges of the pairs are included. Furthermore, the
output of the node w equals the decision variable Y M

m . This relationship can
be given by a list where the wth item of the list contains the corresponding
index m or i. In this example here the transformation is alternatively possi-
ble by using m = 2Ī + 1−w. The node w = 16 (ABCD) of the distribution
graph is the module m = 1, i.e., the whole core. According to the numbering
of the modules in the module definition matrix the module without item A,
i.e., module BCD, has the index m = 2. The module without item B has
the index m = 3 and so on. The corresponding node indices are w = 16,
w = 15, w = 14, etc., respectively.

The right hand side of the equation includes the input into the distribu-
tion graph, which is the output of the core graph V C

v , and all edges from
nodes where the row in column w̃ of matrix EI

ww̃ has a value greater than
zero. Thereby, only the rows with an index greater than the column index
w̃ need to be considered. Thus, the constraints for the modules related to
nodes 6 through 16 are

∑
w̃∈{w̃|w̃<w,EI

ww̃>0}
ZI
ww̃ + 2Y M

2Ī+1−w
= 2

⎛⎜⎝V C
w +

∑
w̃∈{w̃|w̃>w,EI

w̃w>0}
ZI
w̃w

⎞⎟⎠
∀ w ∈ {Ī + 2, . . . , 2Ī}. (4.41)
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For the items the decision variable Y M
m is replaced by the one of items, i.e.,

XI
i . Thereby, the index relationship between i and w can be expressed by

a list or the term i = w − 1, because in node w = 2 item i = 1 is the one
in focus. In addition, the constraints are reduced by the outgoing edges,
because they do not exist (see Fig. 4.8). The relevant nodes are the ones
from node w = 2 to w = Ī + 1 = 5.

XI
w−1 = V C

w +
∑

w̃∈{w̃|w̃>w,EI
w̃w>0}

ZI
w̃w ∀ w ∈ {2, . . . , Ī + 1} (4.42)

Finally, the edges of the pairs need to have the same flow. Each pair is
identified by the values within a row of the matrix EI

ww̃. One edge of a pair
has the value one and the other edge a value greater one, which equals the
column index of the first edge. For an arbitrary row w = 7, we need the
column indices. We select one with an entry in EI

ww̃, which is greater than
one, e.g., column w̃ = 4. Thereby, for choosing w̃ only columns 2 through
7− 1 = 6 need to be considered. The entry in the matrix is EI

7,4 = 2. This

means that the missing edge to this pair is that in column EI
ww̃, i.e., 2.

Outgoing edges only exist for “module” nodes, i.e., 6 through 16 in this
example.

ZI
ww̃ = ZI

w,EI
ww̃

∀ w ∈ {Ī+2, . . . , 2Ī}, w̃ ∈ {w̃|w̃ ∈ {2, . . . , w − 1}, EI
ww̃>1

}
(4.43)

Instead of constraints (4.41), (4.42), and (4.43), we substitute one of the
edges of the pairs by the other so that only the edges with an entry of one
in EI

ww̃ remain.30 This makes the constraint (4.43) dispensable. Thus, the
number of constraints and decision variables is significantly reduced, which
should speed up the solving. Furthermore, only one of the two edges of a
pair has to appear on the output side of the constraint (4.41). This means
that not all edges with EI

ww̃ greater than zero are considered, but only the
ones with EI

ww̃ equalling one. Since the edges in a pair do not appear twice,
the factor two can be removed from the equation. However, the influence
on the input side is valid for the module and item constraints. The output
variable of the core graph V C

v stays unmodified. But the edges must be
changed. Only edges with EI

ww̃ = 1 are kept in the model. But still an edge
from, e.g., node w = 7 to w̃ = 4 exists. These edges—more precisely the
flow variables of such edges—are substituted by their pair flow, i.e., from

30 This methodology equals that of an hypergraph, where a (hyper-)edge connects more
than just two nodes. In our case it connects one source node with two sink nodes. Cf.
Borndörfer et al. (2012): Vehicle rotation planning , p. 5.
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node w = 7 to node w̃ = 2. Thus, the sum over the edges in the right hand
side of the constraints (4.41) and (4.42) are separated into the edges that
have a value of EI

ww̃ = 1 and the ones that have a value EI
ww̃ greater than

one. ∑
w̃∈{w̃|w̃<w,EI

ww̃=1}
ZI
ww̃ + Y M

2Ī+1−w

= V C
w +

∑
w̃∈{w̃|w̃>w,EI

w̃w=1}
ZI
w̃w +

∑
w̃∈{w̃|w̃>w,EI

w̃w>1}
ZI
EI

w̃w,w

∀ w ∈ {Ī + 2, . . . , 2Ī} (4.44)

XI
w−1 = V C

w +
∑

w̃∈{w̃|w̃>w,EI
w̃w=1}

ZI
w̃w +

∑
w̃∈{w̃|w̃>w,EI

w̃w>1}
ZI
EI

w̃w,w

∀ w ∈ {2, . . . , Ī + 1} (4.45)

This reduces the number of flow variables for edges by a factor of two.
The same has to be developed for the recycling. The difference is here that

the recycling graph is based on the grey items in the nodes of the core graph.
These represent non-functioning items. The resulting graph is displayed
in Fig. 4.9. The nodes have the same index and the edges go (roughly
speaking) in the inverse direction compared to the distribution graph. The
resulting edge matrix ER

ww̃ is listed in Table 4.9. It is an upper triangle
matrix. This matrix is rotated by 180 degrees or flipped horizontally and
vertically compared to EI

ww̃ and all values greater than one are transformed

according to ER
ww̃ = 2Ī + 1− EI

ww̃.
The flow constraints of the network are also similar to the ones of the

distribution graph. The output is Y R
m + Y D

m and XR
i + XD

i instead of Y M
m

and XI
i . The input of each node is identical to the other graph, i.e., V C

v .
Hence, the constraints are

∑
w̃∈{w̃|w̃>w,ER

ww̃>0}
ZR
ww̃+2

(
Y R
w + Y D

w

)
= 2

⎛⎜⎝V C
w +

∑
w̃∈{w̃|w̃<w,ER

w̃w>0}
ZR
w̃w

⎞⎟⎠
∀ w ∈

{
1, . . . , 2Ī − Ī − 1

}
(4.46)
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Fig. 4.9 Recycling graph
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Table 4.9 Matrix representation of recycling graph edges

recycling graph edges ER
ww̃

node w̃

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
w ABCD BCD ACD ABD ABC CD BD BC AD AC AB D C B A ∅

1 ABCD 15 14 13 12 11 10 9 1 1 1 1 1 1 1 .
2 BCD . . . 14 13 12 . . . 1 1 1 . .
3 ACD . . 15 . . 13 12 . 1 1 . 1 .
4 ABD . . 15 . 14 . 12 1 . 1 1 .
5 ABC . . 15 . 14 13 . 1 1 1 .

6 CD . . . . . 13 1 . . .
7 BD . . . . 14 . 1 . .
8 BC . . . . 14 1 . .
9 AD . . 15 . . 1 .
10 AC . . 15 . 1 .
11 AB . . 15 1 .
12 D . . . .
13 C . . .
14 B . .
15 A .
16 ∅

Dots denote a value of zero and white spaces are not of interest. Only the framed blocks
of cells can have a value other than zero.

as well as

XR
2Ī−w

+XD
2Ī−w

= V C
w +

∑
w̃∈{w̃|w̃<w,ER

w̃w>0}
ZR
w̃w ∀ w ∈ {2Ī − Ī , . . . , 2Ī}

(4.47)
and

ZR
w,w̃ = ZR

w,ER
ww̃

∀ w ∈
{
1, . . . , 2Ī − Ī − 1

}
, w̃ ∈ {w̃|w̃ > w,ER

ww̃ > 1
}

(4.48)
for the equality of the flows in the edge pairs. The node module conversion is
rather easy, because the node index equals the module index. The item index
is easily calculated by subtracting the node index from the number of nodes
(2Ī). Of course, the flow variables have changed to ZR

ww̃, too. Conducting
the same transformation as with constraints (4.41), (4.42), and (4.43) to
(4.44) and (4.45) we reduce Eqs. (4.46), (4.47), and (4.48) to∑

w̃∈{w̃|w̃>w,ER
ww̃=1}

ZR
ww̃ + Y R

w + Y D
w

= V C
w +

∑
w̃∈{w̃|w̃<w,ER

w̃w=1}
ZR
w̃w +

∑
w̃∈{w̃|w̃<w,ER

w̃w>1}
ZR
ER

w̃w,w
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∀ w ∈
{
1, . . . , 2Ī − Ī − 1

}
(4.49)

and

XR
2Ī−w

+XD
2Ī−w

= V C
w +

∑
w̃∈{w̃|w̃<w,ER

w̃w=1}
ZR
w̃w+

∑
w̃∈{w̃|w̃<w,ER

w̃w>1}
ZR
ER

w̃w,w

∀ w ∈ {2Ī − Ī , . . . , 2Ī}. (4.50)

When taking a look at the constraints (4.25), (4.44), (4.45), (4.49), and
(4.50), we notice that they all contain the variable V C

v . This can be substi-
tuted by transforming Eq. (4.25) to

V C
v = ρv Q

C +
∑

ṽ∈{ṽ|ṽ>v,EC
ṽv=1}

ZC
ṽv −

∑
ṽ∈{ṽ|ṽ<v,EC

vṽ=1}
ZC
vṽ ∀ v . (4.51)

Substituting the variable V C
v in the constraints (4.44), (4.45), (4.49), and

(4.50) and v by w leads to

Y M
2Ī+1−w

= ρw QC +
∑

w̃∈{w̃|w̃>w,EC
w̃w=1}

ZC
w̃w −

∑
w̃∈{w̃|w̃<w,EC

ww̃=1}
ZC
ww̃

+
∑

w̃∈{w̃|w̃>w,EI
w̃w=1}

ZI
w̃w +

∑
w̃∈{w̃|w̃>w,EI

w̃w>1}
ZI
EI

w̃w,w

−
∑

w̃∈{w̃|w̃<w,EI
ww̃=1}

ZI
ww̃ ∀ w ∈ {Ī + 2, . . . , 2Ī}

(4.52)

XI
w−1 = ρw QC +

∑
w̃∈{w̃|w̃>w,EC

w̃w=1}
ZC
w̃w −

∑
w̃∈{w̃|w̃<w,EC

ww̃=1}
ZC
ww̃

+
∑

w̃∈{w̃|w̃>w,EI
w̃w=1}

ZI
w̃w +

∑
w̃∈{w̃|w̃>w,EI

w̃w>1}
ZI
EI

w̃w,w

∀ w ∈ {2, . . . , Ī + 1}
(4.53)

Y R
w + Y D

w = ρw QC +
∑

w̃∈{w̃|w̃>w,EC
w̃w=1}

ZC
w̃w −

∑
w̃∈{w̃|w̃<w,EC

ww̃=1}
ZC
ww̃

+
∑

w̃∈{w̃|w̃<w,ER
w̃w=1}

ZR
w̃w +

∑
w̃∈{w̃|w̃<w,ER

w̃w>1}
ZR
ER

w̃w,w
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−
∑

w̃∈{w̃|w̃>w,ER
ww̃=0}

ZR
ww̃ ∀ w ∈

{
1, . . . , 2Ī − Ī − 1

}
(4.54)

XR
2Ī−w

+XD
2Ī−w

= ρw QC +
∑

w̃∈{w̃|w̃>w,EC
w̃w=1}

ZC
w̃w −

∑
w̃∈{w̃|w̃<w,EC

ww̃=1}
ZC
ww̃

+
∑

w̃∈{w̃|w̃<w,ER
w̃w=1}

ZR
w̃w +

∑
w̃∈{w̃|w̃<w,ER

w̃w>0}
ZR
ER

w̃w,w

∀ w ∈ {2Ī − Ī , . . . , 2Ī}.
(4.55)

So far we considered the two usage options of distribution and recycling
(including disposal). With just these two options the variables v and w
could be used synonymously, as done above. But if items consist of the
wrong material, recycling is not an option anymore, because we assume
that the wrong material is not suitable to meet the demand of material to
recycle. Therefore, these items have to be disposed of. Extending the core
graph with this third specification of items increases the number of nodes
from 2n to 3n and makes the differentiation of v and w necessary.

4.2.2.4 Core condition using graphs with three usage options

The number of edges of the core graph depends on the number of items
Ī and number of usage categories u. The graph consists of (u − 1)ĪuĪ−1

edges (see appendix C.2). For our example the core graph has 34−14(3 −
1) = 216 edges, because we consider the three categories (i.e., u = 3):
distribution, recycling, and disposal.31 The number of nodes and the edges
for the distribution and recycling graph are identical, only that a third
graph—the disposal graph—is added with the same size as the other two.
Obviously, this size cannot be handled manually. Therefore, the extension
to integrate the disposal option is described in the sequel with a main focus
on the automatic generation.

First, the node indexing of the core graph is developed. Given the number
of items Ī, the number of nodes is calculated by 3Ī . The indexing can be in
any way as long as the nodes have a unique index. The node representing
the case where all items have to be disposed of shall be number 1. From

31 For the start of the consideration we differentiated only two categories (=classes),
which results in 24−14(2− 1) = 32 edges for the core graph.
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this node the remaining indices of the nodes can be developed according to
a three-base numbering system.32 Each item of a core is represented by a
digit. Thereby, only three values for each digit are allowed. The values could
be 0, 1, and 2 or A, A, and A, respectively. Thereby, the value zero is related
to an item that has to be disposed of (e.g., A). The value one represents an
item that can be recycled or disposed of (e.g., A) and the value two is used
to identify an item that can be used for everything, even distribution (e.g.,
A). Hence, a number with four digits is, for example, ABCD. In addition,
the order of the digits is reversed. This is only applied to achieve that the
counting starts with item A to get node number 1, 2, 3, etc. no matter
how many items exist. Since the counting starts with zero and ends with
3n − 1, a value of one is added afterwards to get a node indexing of 1
through 3n. According to this definition, the number of a node representing
the combination ABCD is equivalent to 12103 → 4810 + 1 = 4910.

33

This calculation is reversible. In order to get the item coding from a node
number the following steps are necessary. Node number 18 shall be converted
into the item representation. First, we subtract one from the node number
and convert it to the base three system, i.e., 18 − 1 = 1710 = 01223. In a
second step this order of digits is reversed to 2210. Afterwards, the single
digits are replaced with a letter format. Thereby, the first digit is always
item A and the last item Ī, i.e., 2210 ≡ ABCD. Note that the letters are
only used for a better understanding. For the automatic generation of the
core graph only the node number and the reversed three-base number are
of interest.

Now that we have the node number and the corresponding item combi-
nation, the probability that exactly this item combination appears can be
calculated. The probability is denoted by ρv for every node v. It is calculated
according to the condition of an item. Fig. 3.3 on page 36 illustrates the
classification. The damaging is irrelevant for the core graph, because only
the core condition matters. The damaging happens within the disassembly
process and (per definition) only to single items that have been separated
from modules. This means that with a probability of (1− ζi) times (1− ηi)
it is genuine and functioning, i.e., it can be used for distribution, recycling,
and disposal. Such an item is represented by the value 2 in the three-base
system (i.e., A, B, C, and D). With a probability of ζi times ιi an item i
is non-genuine and of the wrong material. In this case the item has to be

32 The binary, decimal, and hexadecimal numbering systems are widely used.
33 The transformation in long: ABCD equals 0121 and in reverse order 1210. This number
belongs to a three-base numbering system, i.e., 12103. The equivalent number of the
decimal system is 4810, because 1 · 33 + 2 · 32 + 1 · 31 + 0 · 30 = 48. Adding 1 results in
the node index of 49 for the node labelled with ABCD.
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Table 4.10 Condition probabilities

item i

A B C D

ζi 3/4 3/5 1/2 1/5

ηi 0 0 0 0
ιi 4/15 5/12 2/5 1/2

disposed of, i.e., it can neither be used for recycling nor for distribution.
Such an item is represented by the value 0 (i.e., A, B, C, and D). With
the remaining probability 1 − (1 − ζi)(1 − ηi) − ζi ιi the item can be used
for recycling and disposal, which is represented by the value 1 (i.e., A, B,
C, and D). To finally calculate the probability of the item combination of
a particular node the single probabilities have to be multiplied. For node
v = 18 we have the item classification 2210. Hence, item A and B can be
used for everything, item C for recycling and disposal, and item D only for
disposal. The probabilities for items A, B, C, and D are (1 − ζA)(1 − ηA),
(1− ζB)(1− ηB), 1− (1− ζC)(1− ηC)− ζC ιC, and ζD ιD, respectively. Using
the probabilities given in Table 4.10 leads to a (node) probability of such
an item combination in a unit of a core of

ρ18 = [(1−ζA)(1−ηA)] [(1−ζB) (1−ηB)] [1− (1−ζC) (1−ηC)− ζC ιC] [ζD ιD]

=

[(
1− 3

4

)
(1−0)

][(
1− 3

5

)
(1−0)

][
1−

(
1− 1

2

)
(1−0)− 1

2
· 2
5

][
1

5
· 1
2

]
= 0.003 . (4.56)

The sum over all node probabilities equals one, i.e.,
∑

v ρv = 1.
The next step is the creation of the edge matrix of the core graph EC

vṽ.
This is an iterative process through all the rows and columns of the matrix,
but each element can be determined independent of all the others. Only
in the lower triangle (excluding the diagonal) exist values unequal zero.
Thereby, the last column (3n) and the first row have only zero values, be-
cause there exist no edge to node 3n and no edge from node 1. All other
nodes have edges according to the following rule. An edge goes from one
node to another if and only if for one item of all Ī there is a reduction by
exactly one classification value. From node 2210 exist edges to the nodes
1210, 2110, and 2200. The differences between the starting node and the
ending nodes are 1000, 0100, and 0010, respectively. This means the Ham-
ming distance is one, i.e., only one digit is changed, and the change of the
one digit is a reduction by one classification value from starting to ending
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node of the edge. Translated into the node numbers it means: node v = 18
is the starting node and the nodes 17, 15, and 9 are the ending ones. Thus,
in row v = 18 the columns ṽ ∈ {9, 15, 17} have a value of 1 and all other
elements in row 18 are 0.

Using the edge matrix of the core graph EC
vṽ, the flow variables ZC

vṽ,
the node probability ρv, the core acquisition quantity QC, as well as the
output of each node of the core graph V C

v to the distribution, recycling, and
disposal graph, the constraints for the nodes are∑

ṽ∈{ṽ|ṽ<v,EC
vṽ=1}

ZC
vṽ + V C

v = ρv Q
C +

∑
ṽ∈{ṽ|ṽ>v,EC

ṽv=1}
ZC
ṽv ∀ v (4.57)

(see Eq. (4.25)). For non-existing edges (i.e., EC
vṽ = 0) the value of the flow

variable ZC
vṽ can be set to zero.

ZC
vṽ = 0 ∀ v, ṽ ∈ {ṽ ∣∣EC

vṽ = 0
}

(4.58)

The resulting core graph for four items is depicted in Fig. 4.10. The different
line styles of the edges are only for a better visibility.

The next steps are the distribution, recycling and disposal graphs. An
approach with using the node numbering of the core graph might be cum-
bersome, because in the three graphs the number of nodes is 2Ī whereas
the number of nodes in the core graph is 3Ī . Thus, a one-to-one relation-
ship does not exist. As mentioned above, it is also possible to use a list (or
matrix) to store the node relationships. Also with this approach, the three
graphs have the same representation, which makes only one edge matrix
necessary. As basis we use the distribution graph (see Fig. 4.8). This graph
contains 2Ī nodes, where node number 2Ī is not connected to the remaining
nodes and could be excluded. Node number 1 shall be the one representing
the complete core.

Node number 2 of the distribution graph is for example node BCD. The
input of this node is the output of the nodes of the core graph, which
contain the item combination BCD as distributable (i.e., class two) together
with remaining items of lower classes (i.e., item A or A). Hence, this node
of the distribution graph is connected with two nodes of the core graph.
When the modules get smaller (i.e., less number of items within a module),
the number of connections with the core graph increases by the factor two
per reduced item. Thus, the item nodes have 2Ī−1 connections with the
core graph. To find the right connections we take an arbitrary node of the
distribution graph w, e.g., BC. This node has four connections. These are
with the nodes ABCD, ABCD, ABCD, and ABCD. Thus, the connection
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Fig. 4.10 Condition dependencies core graph (3 classes, 4 items)
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exists between the node BC of the distribution graph and all nodes of the
core graph with the value 2 for the item positions B and C and values
unequal 2 for all remaining item positions, i.e., A and D. Let us suppose
the set of connections between the distribution and core graph is denoted
by LI

w. Then, this set would contain the entries: LI
BC = {53, 26, 52, 25}. The

set for node 1 is LI
ABCD = {81}.

Applying this procedure to node BC of the recycling graph, it leads to
connections to the nodes ABCD, ABCD, ABCD, and ABCD. The list would
have the elements LR

BC = {69, 15, 67, 13}. Lastly, the connections between
node BC of the disposal graph to the core graph exist to the nodes ABCD,
ABCD, ABCD, and ABCD, i.e., LD

BC = {57, 30, 56, 29}. The edge matrix
ED

ww̃ of the three graphs is equal and an upper triangle matrix of dimension

2Ī ×2Ī . To set the values in the matrix, an arbitrary element can be chosen.
If the column label is not a strict subset of the row label (e.g., row: AB,
column: AC), the element is 0. Otherwise, it is set to 1 (e.g., row: ABC,
column: AC) and the column with the disjoint label (i.e., B) is set to the
node number of the first chosen column (i.e., AC). The resulting edge matrix
is listed in Table 4.11.

Before we come to the equations of the constraints another mapping is
necessary. It is the one between the module index m and the node index
w of the three graphs. The reason why this mapping is required is the fact
that one or more modules of the 2Ī − Ī − 1 theoretically possible modules
do not exist, because of geographical, technical, or topological constraints.
But these nodes representing such a module cannot be simply removed.
Let us assume a module with six items: ABCDEF. Disconnecting one joint
might lead to three modules AB, CD, and EF. This is a three-partition.
Hence, the modules ABCD, ABEF, and CDEF do not exist. If the nodes
representing these three non-existing modules would be removed from the
graph it would not be possible to get the modules AB, CD, and EF out
of one module ABCDEF. This would exclude a feasible solution from the
planning. Therefore, an allocation between the module index m and the
node index w is required.

For every node w an entry exists in LA
w that equals the module index m

or item index i if they exist. In the case that a module does not exist, the
mapping value LA

w equals zero. Using this information two sets of constraints
are developed for the modules, i.e., one where a module exists and one where
no module exists. With the node connection lists LI

w, L
R
w, and LD

w, the edge
matrix ED

ww̃, as well as the knowledge that the nodes from w = 1 through

w = 2Ī − Ī − 1 represent modules, the constraints for the three graphs can
be formulated. We start with the distribution graph. The output of a node,
i.e., edges to other nodes and the planned quantity of modules and items
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Table 4.11 Matrix representation of distribution, recycling, and disposal graph edges

distribution, recycling, disposal graph edges ED
ww̃

node w̃

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
w ABCD BCD ACD ABD ABC CD BD AD BC AC AB A B C D ∅

1 ABCD 1 1 1 1 1 1 1 8 7 6 5 4 3 2 .
2 BCD . . . 1 1 . 1 . . . 6 7 9 .
3 ACD . . 1 . 1 . 1 . 6 . 8 10 .
4 ABD . . 1 1 . . 1 7 8 . 11 .
5 ABC . . . 1 1 1 9 10 11 . .

6 CD . . . . . . . 1 14 .
7 BD . . . . . 1 . 13 .
8 AD . . . 1 . . 12 .
9 BC . . . 1 13 . .
10 AC . 1 . 12 . .
11 AB 1 12 . . .

12 A . . . .
13 B . . .
14 C . .
15 D .
16 ∅

Dots denote a value of zero and white spaces are not of interest. Only the framed blocks
of cells can have a value other than zero.

to distribute, is on the left hand side. This output must equal the input,
which is the connection from the core graph as well as the ingoing edges
from other nodes. Of the outgoing edges only one per pair is used. We use
the one with the value 1 in the edge matrix. For modules the variable Y M

m

denotes the planned quantity for distribution. The index m is stored in LA
w.

For the input side the output of the core graph nodes is added according
to the node list LI

w. The resulting constraints for the nodes representing
existing modules are∑

w̃∈{w̃|ED
ww̃=1}

ZI
ww̃ + Y M

LA
w

=
∑

w̃∈LI
w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZI
w̃w +

∑
w̃∈{w̃|ED

w̃w>1}
ZI
w̃,ED

w̃w

∀ w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Ī − Ī − 1

}
, LA

w > 0
}

(4.59)
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and representing non-existing modules are∑
w̃∈{w̃|ED

ww̃=1}
ZI
ww̃ =

∑
w̃∈LI

w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZI
w̃w+

∑
w̃∈{w̃|ED

w̃w>1}
ZI
w̃,ED

w̃w

∀ w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Ī − Ī − 1

}
, LA

w = 0
}
. (4.60)

In the latter, the planning variable Y M
m is missing.

For the recycling and disposal graph the constraints are slightly modified
so that they contain the appropriate variables.∑

w̃∈{w̃|ED
ww̃=1}

ZR
ww̃ + Y R

LA
w

=
∑

w̃∈LR
w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZR
w̃w +

∑
w̃∈{w̃|ED

w̃w>1}
ZR
w̃,ED

w̃w

∀ w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Ī − Ī − 1

}
, LA

w > 0
}

(4.61)

∑
w̃∈{w̃|ED

ww̃=1}
ZR
ww̃ =

∑
w̃∈LR

w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZR
w̃w+

∑
w̃∈{w̃|ED

w̃w>1}
ZR
w̃,ED

w̃w

∀ w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Ī − Ī − 1

}
, LA

w = 0
}

(4.62)

∑
w̃∈{w̃|ED

ww̃=1}
ZD
ww̃ + Y D

LA
w

=
∑

w̃∈LD
w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZD
w̃w +

∑
w̃∈{w̃|ED

w̃w>1}
ZD
w̃,ED

w̃w

∀ w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Ī − Ī − 1

}
, LA

w > 0
}

(4.63)

∑
w̃∈{w̃|ED

ww̃=1}
ZD
ww̃ =

∑
w̃∈LD

w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZD
w̃w+

∑
w̃∈{w̃|ED

w̃w>1}
ZD
w̃,ED

w̃w

∀ w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Ī − Ī − 1

}
, LA

w = 0
}

(4.64)

In general, the same procedure is applied to the nodes connected to items.
But so far we neglected the aspect of item damaging during the disassembly
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process.34 All items that are separated to single items might get damaged
during the disassembly process with a probability of θi. This is not an item
condition, because an item gets not damaged if the core is not disassem-
bled. However, this damaging has to be considered. Of course, damaging
happens with all single items, regardless if they are intended for distribu-
tion, recycling, or disposal. But only for item distribution this is relevant,
because a damaged item can still be recycled or disposed of. Thus, we have
to differentiate between damaged and undamaged items.

If X̃I
i functioning (and genuine) items are the result of the disassembly

process, they are separated into functioning undamaged XI
i and functioning

damaged XA
i items, i.e.

X̃I
i = XI

i +XA
i ∀ i . (4.65)

Furthermore, at least a fraction of 0 ≤ θi ≤ 1 of the functioning items is
damaged.

XA
i ≥ θi X̃

I
i = θi

(
XI

i +XA
i

) ⇔ (1− θi)X
A
i ≥ θi X

I
i ∀ i (4.66)

The variable X̃I
i is the output of the distribution graph and can be substi-

tuted with XI
i + XA

i . The damaged items (or assumed damaged items)35

increase the items to recycle or dispose of. Assuming, that the output of the
recycling and disposal graph is X̃R

i and X̃D
i , respectively, the equation

XR
i +XD

i = X̃R
i + X̃D

i +XA
i ⇔ X̃R

i = XR
i +XD

i − X̃D
i −XA

i ∀ i
(4.67)

must apply. In addition, the quantity of items to dispose of has to be greater
than or equal the output of the disposal graph.

XD
i ≥ X̃D

i ∀ i (4.68)

This does not have to apply to the recycling, because any item that can be
recycled can also be disposed of. Now we can formulate the constraints for
the three graphs regarding the nodes representing the single items. Note that
these nodes have no outgoing edges. Thus, the only output is the variable for
the planned quantity of items to distribute, i.e., X̃I

i , X̃
R
i , and X̃D

i . Thereby,

34 We assume that only single items separated from a module can be damaged. All items
in a module get not damaged.
35 Because of the greater than or equal relationship in Eq. (4.66) more than the exact
damaged fraction of items can be marked as damaged. To avoid this, an extra constraint
in the form of XA

i < θi
1−θi

XI
i + 1 could be added, because we work with integral values.
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X̃I
i and X̃R

i will be substituted by the right hand side of Eqs. (4.65) and
(4.67). The item index i can be derived from the node index w by the entry
in LA

w. For the distribution graph it means that

XI
LA

w
+XA

LA
w
=

∑
w̃∈LI

w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZI
w̃w +

∑
w̃∈{w̃|ED

w̃w>1}
ZI
w̃,ED

w̃w

∀ w ∈
{
2Ī − Ī , . . . , 2Ī − 1

}
. (4.69)

The same applies to the recycling and disposal graph so that we have

XR
LA

w
+XD

LA
w
− X̃D

LA
w
−XA

LA
w

=
∑

w̃∈LR
w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZR
w̃w +

∑
w̃∈{w̃|ED

w̃w>1}
ZR
w̃,ED

w̃w

∀ w ∈
{
2Ī − Ī , . . . , 2Ī − 1

}
(4.70)

and

X̃D
LA

w
=

∑
w̃∈LD

w

Y C
w̃ +

∑
w̃∈{w̃|ED

w̃w=1}
ZD
w̃w +

∑
w̃∈{w̃|ED

w̃w>1}
ZD
w̃,ED

w̃w

∀ w ∈
{
2Ī − Ī , . . . , 2Ī − 1

}
. (4.71)

Because of the integration of the Eqs. (4.65) and (4.67) into the constraints,
only the two constraints

(1− θi)X
A
i ≥ θi X

I
i ∀ i (4.72)

and (4.68) are necessary in addition. Lastly, in all three graphs the unused
flow variables can be set to zero.

ZI
ww̃ = ZR

ww̃ = ZD
ww̃ = 0 ∀ w, w̃ ∈ {w̃ ∣∣ED

ww̃ �= 1
}

(4.73)

Taking a look at the here used decision variables Y R
m , Y D

m , XR
i , and XD

i , we
notice the lack of indices for the recycling and disposal target, i.e., index r
and d. Of course, the core index c is also missing, but this index has to be
added to every variable, because for each core c the above condition and
damaging consideration applies individually. Coming back to the indices r
and d. Once a unit of an item or module comes out of the recycling graph,
a decision is necessary to which r the item has to be assigned to. Since this
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decision appears after the output of the recycling graph, the above used
variables Y R

m , Y D
m , XR

i , and XD
i can easily be substituted by the expressions∑

r Y
R
mr,

∑
d Y

D
md,

∑
r X

R
ir, and

∑
d X

D
id, respectively.

36 Note that the index
c has to be added to all variables in a further step. This can be seen in the
next section where the complete model formulation is presented.

But before we get to this we take a step back to the core graph. The
coefficients ρv of the quantity of cores QC in Eq. (4.59) can have values
between one and zero. The sum of them per core equals one. Depending on
the given data, many coefficient values can be almost zero, e.g., values of
10−12. Such values are numerically problematic when solving the model. In
addition, assuming a value of up to 1,000 for QC the input of this specific
node would be 10−9 at the most. This is negligible. Of course, the sum of
all ρv has to equal one in order to get the same quantity out of the core
graph as is put in. Hence, the equation∑

v

V C
v = QC (4.74)

must be valid.
To avoid numerical problems we modify coefficients and split Eq. (4.59).

The modified coefficients are denoted by ρ̃v and are calculated in the fol-
lowing way, when we assume values of less than 10−7 being insignificant.

ρ̃v =

{
ρv ρv > 10−7

0 else
∀, v ∈ {1, . . . , 3Ī − 1} (4.75)

ρ̃3Ī = 1.00001−
3Ī−1∑
v=1

ρ̃v (4.76)

Furthermore, the node representing the condition that all items of a core
are functioning is the one with the number 3Ī . The coefficient of this node
is increased so that the sum over all coefficients ρ̃v is greater than or equal
to one. We choose a sum value of more than one, e.g., 1.00001. It must be
assured that no extra output unit of a core is generated. For example, a sum
value of 1.01 with an expected QC = 1,000 should be avoided, because the
output could be 1,010 with an input of 1,000. This case does not happen,
because Eq. (4.74) is added as constraint, too. To realise this input and
output equality in the case of

∑
v ρ̃v > 1, the equation for node v = 1 must

be changed into an inequality. In addition, no outgoing edges from node 1
exist so that the constraint is

36 The variables XA
i and X̃D

i are not affected.
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V C
1 ≤ ρ̃1 Q

C +
∑

ṽ∈{ṽ|ṽ>1,EC
ṽ,1=1}

ZC
ṽ,1 . (4.77)

For the remaining nodes v ∈ {2, . . . , 3Ī} the coefficient ρv is substituted
by ρ̃v in constraint (4.59). All these above discussed aspects need to be
expressed by a mathematical formulation, which follows in the next section.

4.2.3 Model formulation

The calculation of the profit is unchanged, i.e., it is the difference between
the revenues and the cost.

Maximise P = R− C (4.78)

The first change is extending the revenues by the ones of the distributed
modules. The individual price for a demanded module f is denoted by rMf
and the quantity that is distributed by QM

f .

R =
∑
e

rIeQ
I
e +

∑
f

rMf QM
f +

∑
r

rRr Q
R
r (4.79)

In the cost function the cost savings are modelled in the following way. When
a module is distributed, recycled, or disposed of, the connections keeping
together the consisting items are not separated. In addition, the cost to
disassemble the module completely is known. This was already assumed
in the basic model. Furthermore, when a core is disassembled into several
modules and items not only one saving occurs. Each module represents
a saving of a fraction of the core. Knowing the disassembly cost of the
complete core and of each module, which can be generated out of this core,
the resulting disassembly cost is the complete disassembly cost minus the
saved cost.

Without loss of generality, we assume that the complete core is denoted
by the index m = 1, as is done in the disassembly state and and/or graph
above. Hence, the cost parameter notation is changed from cJc to cJc,1, but
the value is identical. The cost that is saved is the sum of all modules m of
all cores c, that are distributed Y M

cm, recycled in all bins Y R
cmr, and disposed

of Y D
cmd.
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C =
∑
c

(
cAc + cJc,1

)
QC

c −
∑
c

Mc∑
m=1

cJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
+
∑
d

cDd Q
D
d (4.80)

The constraints are again grouped in the categories

• item and module flow,
• core condition,
• purity, and
• limits,

so that they are comparable with the basic model more easily.

Item and module flow constraints

In addition to all the single items, all corresponding items in modules plus
the single items must equal the items available through the quantity of cores.
Thereby, the quantities of modules (for distribution, recycling, and disposal)
are added according to the consisting items. This information contains the
modules definition matrix δcmi. In order to assure that the quantity of item
A contained in the core equals the quantity on the output side of the process
the quantity of distributed items XI

ci, recycled items XR
cir, disposed items

XD
cid, as well as all modules only those quantities of modules need to be

added, which contain an item A. And this information is given in the module
definition matrix by a value of 1 if item i = A is in module m. Thereby,
only up to the last index M c of the modules of core c need to be considered
in the summation.

QC
c = XI

ci +
∑
r

XR
cir +

∑
d

XD
cid +

Mc∑
m=1

δcmi

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c, i ∈ {1, . . . , Īc} (4.81)

For determining the weight of the items and modules in the recycling boxes
r and disposal bins d each item (either as single item or in a module) is
multiplied with its weight and added.

QR
r =

∑
c

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ∀ r (4.82)
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QD
d =

∑
c

Īc∑
i=1

wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠ ∀ d (4.83)

The consideration of additional items along with certain modules is a new
aspect. For each item i (up to Īc) of a core c the wanted solution has to fulfil
the property that at least the quantity of additional items exist as single
items somewhere (therefore the sum on the left hand side) when certain
modules with their particular additional items αcmi are in the solution.
Here, it does not matter what the module is intended for.

XI
ci +

∑
r

XR
cir +

∑
d

XD
cid ≥

Mc∑
m=1

αcmi

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c, i ∈ {1, . . . , Īc} (4.84)

For the single items nothing has changed regarding the commonality and
multiplicity for demanded items.

QI
e =

∑
(c,i)∈Pe

XI
ci ∀ e (4.85)

If an item is not demanded, the corresponding decision variable is set to
zero.

XI
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (4.86)

The same applies to modules. Here, commonalities might also exist and
therefore a relationship between demanded modules f and the modules of a
particular core m is expressed by the sets Rf for each demanded module f .
The set contains core module combinations (c,m) that satisfy the demand.

QM
f =

∑
(c,m)∈Rf

Y M
cm ∀ f (4.87)

If a module is not demanded at all, the corresponding variable is set to zero.

Y M
cm = 0 ∀ (c,m) /∈

⋃
f

Rf (4.88)
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Condition constraints

The condition constraints are the major impact of the model extension to
the flexible disassembly planning. To model the flexibility, a core graph with
nodes representing all condition permutations of the cores in conjunction
with three graphs representing the modules to distribute, recycle, and dis-
pose of is added. The coefficients for the core graph are determined by

ρ̃cv =

{
ρcv ρcv < 10−7

0 else
∀ c, v ∈ {1, . . . , 3Īc − 1} (4.89)

ρ̃c,3Īc =

⎛⎝1.00001−
3Īc−1∑
v=1

ρ̃cv

⎞⎠ ∀ c (4.90)

based on the given data ρcv. To check whether the chosen value of 1.00001 is
not to big, the model can be solved without the integrality constraints. The
resulting solution of the continuous model shows if the quantity of cores QC

c

does not exceed 10,000. The node number v = 1 is treated specially, because
it has no outgoing edges and the flow through the node is an inequality.
Thereby, the flow through the edges from node v to node ṽ of core c is
denoted by ZC

cvṽ. The information if an edge exists is given by EC
cvṽ equalling

one. In addition, the output of a node of this graph to the other three graphs
is represented by the variable V C

cv .

V C
c,1 ≤ ρ̃c,1 Q

C
c +

∑
ṽ∈{ṽ|ṽ>1,EC

c,ṽ,1=1}
ZC
c,ṽ,1 ∀ c (4.91)

The flow through the remaining nodes of the core graph is an equality of
input and output. Here, the outgoing edges are included, too.∑

ṽ∈{ṽ|ṽ<v,EC
cvṽ=1}

ZC
cvṽ + V C

cv = ρ̃cv Q
C
c +

∑
ṽ∈{ṽ|ṽ>v,EC

cṽv=1}
ZC
cṽv

∀ c, v ∈ {2, . . . , 3Īc − 1} (4.92)

The output of the core graph V C
cv has to equal the input QC

c , i.e.,∑
v

V C
cv = QC

c ∀ c . (4.93)
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Lastly, all edge variables ZC
cvṽ without an existing edge flow do not exist

and are set to zero.

ZC
cvṽ = 0 ∀ c, v, ṽ ∈ {ṽ ∣∣EC

cvṽ = 0
}

(4.94)

The output of the core graph goes into the distribution, the recycling, and
the disposal graph. The structure of these three is identical, i.e., the edge
definition is given by a single value ED

cww̃. The nodes of these three graphs
are labelled with w instead of v. For each graph, three sets of constraints
exist: one for nodes representing an existing module (Eq. (4.95)), one for
nodes representing no existing module (Eq. (4.96)), and one for the item
representing nodes (Eq. (4.97)). The flow variable of the distribution graph
is ZI

cww̃. The output of the distribution graph is the quantity of modules to
distribute Y M

cm as well as the quantity of items to distributeXI
ci together with

the damaged items XA
ci. The mapping between the nodes of the distribution

graph and the core graph is given by LI
cw and the one to the module and

item index by LA
cw.∑

w̃∈{w̃|ED
cww̃=1}

ZI
cww̃ + Y M

c,LA
cw

=
∑

v∈LI
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZI
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZI
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw > 0
}

(4.95)

∑
w̃∈{w̃|ED

cww̃=1}
ZI
cww̃

=
∑

v∈LI
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZI
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZI
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw = 0
}

(4.96)

XI
c,LA

cw
+XA

c,LA
cw

=
∑

v∈LI
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZI
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZI
c,w̃,ED

cw̃w

∀ c, w ∈
{
2Īc − Īc, . . . , 2

Īc − 1
}

(4.97)
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The recycling graph is more or less identical to the distribution graph, only
the flow variables are ZR

cww̃ and the core graph node mapping is given by
LR
cw. In addition, the output of the item nodes is directly formulated by the

variables XR
cir, X

D
cid, X

A
ci, and X̃D

ci . The latter is the output of the disposal
graph. The three constraint sets are:∑

w̃∈{w̃|ED
cww̃=1}

ZR
cww̃ +

∑
r

Y R
c,LA

cw,r

=
∑

v∈LR
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZR
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZR
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw > 0
}
, (4.98)

∑
w̃∈{w̃|ED

cww̃=1}
ZR
cww̃

=
∑

v∈LR
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZR
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZR
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw = 0
}
, (4.99)

and∑
r

XR
c,LA

cw,r +
∑
d

XD
c,LA

cw,d − X̃D
c,LA

cw
−XA

c,LA
cw

=
∑

v∈LR
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZR
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZR
c,w̃,ED

cw̃w

∀ c, w ∈
{
2Īc − Īc, . . . , 2

Īc − 1
}
. (4.100)

For the disposal graph the same substitutions are applied. The flow variables
are ZD

cww̃ and the mapping LD
cw. The output of the item nodes is X̃D

ci .∑
w̃∈{w̃|ED

cww̃=1}
ZD
cww̃ +

∑
d

Y D
c,LA

cw,d

=
∑

v∈LD
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZD
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZD
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw > 0
}

(4.101)
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w̃∈{w̃|ED

cww̃=1}
ZD
cww̃

=
∑

v∈LD
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZD
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZD
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw = 0
}

(4.102)

X̃D
c,LA

cw
=

∑
v∈LD

cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZD
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZD
c,w̃,ED

cw̃w

∀ c, w ∈
{
2Īc − Īc, . . . , 2

Īc − 1
}

(4.103)

All edge flow variables without an existing edge in the three graphs are set
zero.

ZI
cww̃ = ZR

cww̃ = ZD
cww̃ = 0 ∀ c, w, w̃ ∈ {w̃ ∣∣ED

cww̃ �= 1
}

(4.104)

Important is that the quantity of disposed items is at least the output of
the disposal graph, because otherwise the disposal quantity could be less.
In Eq. (4.100) exists no lower limitation.∑

d

XD
cid ≥ X̃D

ci ∀ c, i (4.105)

The last aspect of the condition—even though it is not really a condition—is
the item damaging. The damaged items are denoted by XA

ci, the functioning
ones by XI

ci, and the damaging probability by θci. According to Eq. (4.72)

(1− θci)X
A
ci ≥ θci X

I
ci ∀ (c, i) ∈

⋃
e

Pe (4.106)

must apply. In addition, when no demand for distribution exists for an item,
the damaging is irrelevant so that we can state

XA
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (4.107)

analogously to Eq. (4.86).
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Purity constraints

In addition to the items the modules in the recycling boxes are added to
the purity constraint.

ωrQ
R
r ≤

∑
c

Īc∑
i=1

πcirwci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ∀ r (4.108)

The treatment of hazardous items stays unchanged.

XR
cir = 0 ∀ (c, i) ∈ H, r (4.109)

XD
cid = 0 ∀ (c, i) ∈ H, d ∈ {1} (4.110)

This treatment is adapted to the modules. Modules with hazardous items
must not be placed into recycling boxes or non-hazardous disposal bins.

Y R
cmr = 0 ∀ (c,m) ∈ {(c,m)|δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}

}
, r
(4.111)

Y D
cmd = 0 ∀ (c,m) ∈ {(c,m)|δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}

}
, d ∈ {1}
(4.112)

Limits constraints

The demand for modules DM
f and the lower distribution limit QM

f limit the

values for the distribution quantity QM
f . The other limits for cores, items,

recycling material, and disposal are unchanged.

QC
c ≤ QC

c ≤ QC
c ∀ c (4.113)

QI
e ≤ QI

e ≤ DI
e ∀ e (4.114)

QM
f ≤ QM

f ≤ DM
f ∀ f (4.115)

QR
r ≤ QR

r ≤ DR
r ∀ r (4.116)

QD
d ≤ QD

d ≤ QD
d ∀ d (4.117)

Furthermore, the saved disassembly time tJcm for each kept module is sub-
tracted from the complete disassembly time tJc,1 and must not exceed the

available labour time L.
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∑
c

tJc,1Q
C
c −

∑
c

Mc∑
m=1

tJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
≤ L̄ (4.118)

Lastly, the domain of the added variables Y M
cm, Y R

cmr, and Y D
cmd is integer

numbers and that of the quantity QM
f real numbers.

XI
ci, X

A
ci, X̃

D
ci , X

R
cir, X

D
cid, Y

M
cm, Y R

cmr, Y
D
cmd ∈ Z

∗

∀ c, i ∈ {1, . . . , Īc},m ∈ {1, . . . ,M c}, r, d (4.119)

With these variables the remaining variables (QC
c , Q

I
e, Q

M
f , QR

r , Q
D
d , P , R,

and C) are automatically in the correct domain.

Model size

To illustrate the model size the number of decision variables and constraints
are listed in Table 4.12under “flexible disassembly planning”. The basis of
the determination of the numbers is the compact model, i.e., the model
formulation in appendix C.3. To avoid confusion with existing variables the
number of indices is denoted by the index itself. This means that the c in
the table must be read as

∑
c 1. Hence, when writing c ·r, the interpretation

is to calculate the number of cores times the number of recycling boxes.
The XI

ci only have values different than zero for elements of the set
⋃

e Pe,
which leads to the entry |⋃e Pe| in the table. The variables XR

cir and XD
cid

occur
∑

c Īc times r and d, respectively. But, Eqs. (4.109) and (4.110) set
the value of core item combinations of hazardous items equal to zero. Thus,
these variables are excluded from the consideration. The resulting number
of decision variables for a model with one hazardous disposal bin is depicted
in the table.

To compare the size with the basic model of the complete disassembly,
the content of Table 3.2 is listed here, too. The increase of integer variables
results from the demanded modules f , the modules m in the recycling boxes
and disposal bins, i.e.,

∣∣⋃
f Rf

∣∣ + (r + d)
∑

c M c, and the damaged items

XA
ci as well as the output of the disposal graph X̃D

ci , i.e., |
⋃

e Pe| +
∑

c Īc.
In addition, all the real variables are added, too. This increase is enormous,
because of the term Īc · 3Īc (simplified here). A similar increase can also be
noticed with the constraints. The difference is

∑
c

(
3Īc+3·2Īc+Īc

)−2 c+2 f .
The number of variables and constraints increases exponentially for the
number of items. Besides, the number of modules also depends exponentially
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Table 4.12 Number of decision variables and constraints

flexible disassembly planning

real variables
∑

c

((
2
3
Īc +

5
2

)
3Īc − 3 · 2Īc

)
+ 3

2
c

integer variables 2
∣∣⋃

e Pe

∣∣+ ∣∣∣⋃f Rf

∣∣∣+ (r + d)
(∑

c

(
Īc +Mc

)− |H|)+∑
c Īc + |H|

constraints
∑

c

(
3Īc + 3 · 2Īc + 3 Īc

)
+

∣∣⋃
e Pe

∣∣− c+ 3 r + 2 (e+ f + d) + 1

complete disassembly planning

integer variables
∣∣⋃

e Pe

∣∣+ (∑
c Īc − |H|) (r + d) + |H|

constraints 2
∑

c Īc +
∣∣⋃

e Pe

∣∣+ c+ 3r + 2d+ 2e+ 1

(in the worst case) on the number of items, which leads to an exponential
increase of the number of variables and constraints with respect to the
number of items a core consists of.

To illustrate this, let us assume a problem with two cores (c = 2), four
and six items in one of these cores (Ī1 = 4, Ī2 = 6), 15 and 37 modules
in one of these cores (M1 = 15, M2 = 37), three recycling boxes (r = 3),
two disposal bins (d = 2), two hazardous items (|H| = 2), two demanded
items (e = 2), five core item combinations the demand can be met with

(|⋃2
e=1 Pe| = 5), three demanded modules (f = 3), and four core module

combinations the demand can be met with (|⋃3
f=1 Rf | = 4). With these

values the number of real variables is limited by ((23 · 4 + 5
2 )3

4 − 3 · 24) +
(( 23 · 6+ 5

2 )3
6 − 3 · 26)+ 3

2 · 2 = 4920, the integer variables by 2 · 5+ 4+ (3+
2)(4 + 15+ 6+ 37− 2) + 4+ 6+ 2 = 326, and the number of constraints by
(34+3 ·24+3 ·4)+(36+3 ·26+3 ·6)+5−2+3 ·3+2 (2+3+2)+1 = 1107.

4.2.4 Numerical example

4.2.4.1 Data

The exemplary data to illustrate the planning is based on the one in the
basic model (see Sect. 3.1.3). The three forklift trucks with their eight items
each are the available cores. The demand for items, the availability of cores,
the condition, and so on apply to the example here, too. The Tables 3.3–
3.8 contain most of the data. In addition, the item i = H of core c = 1 is
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Table 4.13 Cost and time of separating connections

joint time joint cost

item i item i

c i B C D E F G H B C D E F G H

1

A . . . . . 0.125 . . . . . . 3.75 .
B . . . . 0.125 . . . . . 3.75 .
C . . . 0.125 . . . . 3.75 .
D . . 0.125 . . . 3.75 .
E 0.5 . . 15 . .
F 3 . 90 .
G 6 180

2

A . . . . . 0.125 . . . . . . 3.75 .
B . . . . 0.125 . . . . . 3.75 .
C . . . 0.125 . . . . 3.75 .
D . . 0.125 . . . 3.75 .
E 0.5 . . 15 . .
F 2.5 . 75 .
G 5.5 175

3

A . . . . . 0.125 . . . . . . 3.75 .
B . . . . 0.125 . . . . . 3.75 .
C . . . 0.125 . . . . 3.75 .
D . . 0.125 . . . 3.75 .
E 0.5 . . 15 . .
F 2.5 . 75 .
G 4.5 155

A dot denotes a value of zero.

hazardous. The labour hours are limited to L̄ = 2,200 h. Again, the disposal
bin d = 2 holds the hazardous items. The data for the modules is already
developed in Sect. 4.2.1. The module definition matrix δcmi as well as the
additional item matrix αcmi in Table 4.2 are important. In this example
setting these are identical for all three cores which means that δ1,m,i =
δ2,m,i = δ3,m,i and α1,m,i = α2,m,i = α3,m,i.

In addition, the saved disassembly cost cJcm and saved time tJcm for each
module is necessary. These values are calculated on the basis of time and
cost for each existing connection that holds the core together. The upper
triangle matrices holding this information are listed in Table 4.13. Thereby,
an entry of 1/8 in row B and column G of the joint time matrix means
that a time of 0.125 h is planned to separate the connection between item
B and G, i.e., to take of a wheel. Adding all entries of the matrix for the
corresponding core leads to the disassembly time of the complete core (i.e.,
10 h, 9 h, and 8 h) as used in the basic model. Based on the time the cost is
simply calculated by multiplying the time with a factor 30. In addition, the
cost for separating the connection between G and H in core 2 is furthermore



4.2 Flexible disassembly planning model 215

Table 4.14 Saved cost and time of modules

saved time tJcm saved cost cJcm saved time tJcm saved cost cJcm

m c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 m c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

1 10 9 8 300 280 260 26 6.375 5.875 4.875 191.25 186.25 166.25
2 9.875 8.875 7.875 296.25 276.25 256.25 27 9.25 8.25 7.25 277.5 257.5 237.5
3 9.875 8.875 7.875 296.25 276.25 256.25 28 3.75 3.25 3.25 112.5 97.5 97.5
4 9.875 8.875 7.875 296.25 276.25 256.25 29 9.5 8.5 7.5 285 265 245
5 9.875 8.875 7.875 296.25 276.25 256.25 30 9.125 8.125 7.125 273.75 253.75 233.75
6 9.5 8.5 7.5 285 265 245 31 9.125 8.125 7.125 273.75 253.75 233.75
7 9.75 8.75 7.75 292.5 272.5 252.5 32 6.25 5.75 4.75 187.5 182.5 162.5
8 9.75 8.75 7.75 292.5 272.5 252.5 33 9.125 8.125 7.125 273.75 253.75 233.75
9 9.75 8.75 7.75 292.5 272.5 252.5 34 3.625 3.125 3.125 108.75 93.75 93.75
10 9.375 8.375 7.375 281.25 261.25 241.25 35 9.125 8.125 7.125 273.75 253.75 233.75
11 9.75 8.75 7.75 292.5 272.5 252.5 36 3.625 3.125 3.125 108.75 93.75 93.75
12 9.75 8.75 7.75 292.5 272.5 252.5 37 6.25 5.75 4.75 187.5 182.5 162.5
13 9.375 8.375 7.375 281.25 261.25 241.25 38 6.25 5.75 4.75 187.5 182.5 162.5
14 9.75 8.75 7.75 292.5 272.5 252.5 39 3.25 2.75 2.75 97.5 82.5 82.5
15 9.375 8.375 7.375 281.25 261.25 241.25 40 9 8 7 270 250 230
16 9.375 8.375 7.375 281.25 261.25 241.25 41 3.5 3 3 105 90 90
17 9.625 8.625 7.625 288.75 268.75 248.75 42 6.125 5.625 4.625 183.75 178.75 158.75
18 9.625 8.625 7.625 288.75 268.75 248.75 43 6.125 5.625 4.625 183.75 178.75 158.75
19 9.25 8.25 7.25 277.5 257.5 237.5 44 3.125 2.625 2.625 93.75 78.75 78.75
20 9.625 8.625 7.625 288.75 268.75 248.75 45 6.125 5.625 4.625 183.75 178.75 158.75
21 9.25 8.25 7.25 277.5 257.5 237.5 46 3.125 2.625 2.625 93.75 78.75 78.75
22 9.25 8.25 7.25 277.5 257.5 237.5 47 6 5.5 4.5 180 175 155
23 9.625 8.625 7.625 288.75 268.75 248.75 48 3 2.5 2.5 90 75 75
24 9.25 8.25 7.25 277.5 257.5 237.5 49 0.5 0.5 0.5 15 15 15
25 9.25 8.25 7.25 277.5 257.5 237.5 50 0.125 0.125 0.125 3.75 3.75 3.75

increased by 10e and in core 3 by 20e. Thus, adding all entries of the cost
matrices leads to the values 300e, 280e, and 260e for core 1, 2, and 3,
respectively, as used in the basic model with complete disassembly.

Based on these individual values the saved cost and time of modules can
be determined. Thereby, the cost and times of the still existing connections
are added. For example, in module m = 21 (BDFGH) of core c = 1 the
connections B-G, D-G, F-G, and G-H exist. Adding the times results in
0.125+0.125+3+6 = 9.25 h and the cost is 3.75+2.75+90+180 = 277.5e.
Following this procedure, the values (times and cost) for all 50 modules can
now be determined. These are listed in Table 4.14.

Missing data is the demand of modules. This means that we need to
know which modules f are demanded, which modules of cores we can take
to meet the demand (Rf ), the lower distribution limits QM

f , the demanded

quantityDM
f , and the price of such a module rMf . Let us assume two modules

are demanded. The first is module GH (m = 47) of core 3 and the second
module EF (m = 49) of core 1 and 2, because the items E and F as well as
the resulting module EF are identical in core 1 and 2. Hence, module GH is
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Table 4.15 Demanded modules with distribution limits

f QM
f DM

f rMf Rf

1 0 30 2900 {(3, 47)}
2 0 90 600 {(1, 49), (2, 49)}

Table 4.16 Usage probability

item i

core usage A B C D E F G H

c = 1
disposal 0 0 0.0015 0.0015 0 0 0 0
disposal & recycling 0.55 0.55 0.5735 0.5735 0.01 0.05 0.01 0.05
disp. & rec. & distribution 0.45 0.45 0.425 0.425 0.99 0.95 0.99 0.95

c = 2
disposal 0 0 0 0 0 0 0 0
disposal & recycling 0.55 0.55 0.55 0.55 0.01 0.05 0.01 0.05
disp. & rec. & distribution 0.45 0.45 0.45 0.45 0.99 0.95 0.99 0.95

c = 3
disposal 0 0 0.0015 0.0015 0 0 0 0
disposal & recycling 0.55 0.55 0.5735 0.5735 0.01 0.05 0.01 0.01
disp. & rec. & distribution 0.45 0.45 0.425 0.425 0.99 0.95 0.99 0.99

unique in core 3 whereas module EF is common across core 1 and 2. This
information is stored in the sets Rf as is depicted in Table 4.15. The set Rf

contains core module combinations like the set Pe for items. Obviously, the
module index (in our example m = 49) does not have to be identical across
the cores the modules are taken from to meet the demand and even two or
more modules from the same core can be used to meet the demand. This
represents the commonality and multiplicity, respectively, with respect to
modules. The lower distribution limits, the prices, and the demand as upper
limit are given in the table, too.

Furthermore, the condition coefficients for the nodes of the core graphs
need to be determined. They are based on the condition probability to gain
the values ρcv. And these are the basis for the modified values ρ̃cv used in
the model. To make the calculation of the values ρcv more comprehensible,
we can first create a table that contains the probabilities that an item can be
used for disposal only, disposal and recycling, as well as disposal, recycling,
and distribution. According to Fig. 3.3 an item can be used for disposal
only with a probability of ζciιci. On the other hand, an item can be used for
all three cases with a probability of (1− ζci) (1− ηci), leaving the damaging
aside. The remaining probability for disposal and recycling is 1 − ζciιci −
(1− ζci) (1− ηci). For item D of core 1 the three values are 0.0015, 0.5735,
and 0.4250, respectively. All values can be found in Table 4.16. The value
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of ρcv is then calculated in the following way. Let us take node v = 6512.
This node represents a core with the following condition: item C has to
be disposed of, items A, B, and D can be recycled or be disposed of, and
items E through H can be used for anything. According to the three-base
system developed on page 194, the node 6512 is converted to 11012222 which
represents the core condition of ABCDEFGH. With this coding ρ1,6512 is
calculated by multiplying the following values in Table 4.16 of core c = 1.
Each number added by one (i.e., 22123333) is the row index the values have
to be taken from. This means we get ρ1,6512 = 0.55 · 0.55 · 0.0015 · 0.5735 ·
0.99 ·0.95 ·0.99 ·0.95 = 0.00023018. This is calculated for all 6561 nodes per
core. Doing so, we get 576, 256, and 576 values being greater than zero for
core 1, 2, and 3, respectively. With these values we determine the modified
values ρ̃cv. The result is that only 364, 240, and 326 values greater than
zero remain of the above for the cores 1, 2, and 3, respectively. A listing of
the values is skipped here, because of the amount of data. (An excerpt is
listed in Table C.2 in appendix C.4.)

The edges of the core graphs coded in EC
cvṽ and ED

cww̃ are calculated
as described further above. The same applies to the mapping between the
distribution, recycling and disposal graph with the core graph, i.e., LI

cw,
LR
cw, and LD

cw, respectively. The last mapping between the distribution,
recycling and disposal graph and the module and item index is LA

cw. It
is also automatically determined using the coding of w and the module
definition δcmi as well as the item index i. Excerpts of the data (i.e., EC

cvṽ,
ED

cww̃, L
I
cw, L

R
cw, L

D
cw, and LA

cw) can be found in appendix C.4. Given all
the data, the optimal solution can be determined.

4.2.4.2 Solution

Based on the model with the given exemplary data a solution shall be
generated. Unfortunately, this model is already so big, that a formulation
with LINGO is not possible, because of missing memory when building the
model. Therefore, the model is directly formulated in R to be solved with
GUROBI. Solving the model results in a maximal profit of P = 30,739e.
Thereby, the revenues and cost are R = 826,995.4e and C = 796,256.4e,
respectively. The values of the variables are listed in Table 4.17and the item
and module flow with the quantities of the solution is depicted in Fig. 4.11.
Note that all non-listed item and module variables have a value that equals
zero. This means that no module is disposed of and, as expected, no items
or modules are allocated into the boxes for material recycling of rubber and
plastics, because the revenues are to low or the purity is not given. With the
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Table 4.17 Optimal solution of the flexible planning

variables representing the interfaces

QC
1 30 QI

1 242 QM
1 30 QR

1 35,627 QR
4 0

QC
2 218 QI

2 154 QM
2 90 QR

2 72,041 QD
1 32

QC
3 31 QI

3 215 QR
3 0 QD

2 6,000

integer variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2
c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 9 98 13 . 117 12 . 1 5 . . . . . .
B 12 97 13 . 117 17 . 1 . . . . . . .
C . . . 23 215 30 6 . . 1 . 1 . . .
D . . . . 215 30 29 . . 1 . 1 . . .
E 29 125 . . . 30 . . . . . . . . .
F . . . . 123 30 . . . . . . . . .
G . 215 . . . . . . . . . . . . .
H . . . . . . . 215 . . . . 30 . .

Y M
cm Y R

cmr

r = 1 r = 2
c c c

m 1 2 3 1 2 3 1 2 3

1 (ABCDEFGH) . . . . . . . 1 .
6 (ABCDFGH) . . . . . . . 1 .
10 (BCDFGH) . . . . . . . 1 .
14 (ABEFGH) . . . . . . . . 1
28 (ABEFG) . . . . . . 1 . .
39 (ABFG) . . . . . . 11 . .
44 (BFG) . . . . . . 6 . .
46 (AFG) . . . . . . 9 . .
47 (GH) . . 30 . . . . . .
48 (FG) . . . . . . 3 . .
49 (EF) . 90 . . 2 . . . .

A dot denotes a value of zero.

explicit demand of a module of core 3 it is now beneficial to acquire more
QC

3 = 31 than just the lower limit QC
3 = 25 of core 3. Core 1 is still not

beneficial, probably because of the hazardous item H. All three demanded
items are distributed much more than the lower limits. The demand of item
e = 1 with DI

1 = 250 units is almost met with QI
1 = 242. The demand of

modules is completely met with 30 and 90 units of the modules f = 1 and
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disassembly
into items

and modules

cores
QC

1 = 30

QC
2 = 218

QC
3 = 31

genuine & functional & undamaged

item distribution

front wheels

forks

chassis

QI
1 = 242

QI
2 = 154

QI
3 = 215

core 1: A B E
9 12 29

core 2: A B E G
98 97 125 215

core 3: A B
13 13

items to distribute

91A+121B+982A+972B+133A+133B

291E+1252E

2152G+03G

module distribution

(GH)

(EF)

QM
1 = 30

QM
2 = 90

core 1:

core 2: (EF)
90

core 3: (GH)
30

modules to distribute

303(GH)

01(EF)+902(EF)

core 1: (ABEFG) (ABFG) (BFG) (AFG) (FG)
1 11 6 9 3

core 2: (ABCDEFGH) (ABCDFGH) (BCDFGH) (EF)
1 1 1 2

core 3: (ABEFGH)
1

modules

core 1: C D H
30 30 30

core 2: A B C D F H
118 118 215 215 123 215

core 3: A B C D E F
17 17 31 31 30 30

items

material recycling

steel

metal

rubber

plastics

QR
1 = 35,627

QR
2 = 72,041

QR
3 = 0

QR
4 = 0

22(EF)

231C+1172A+1172B+2152C+2152D+1232F+123A+173B+303C+303D+303E+303F

61C+291D+12A+12B+2152H+53A

disposal

waste

hazardous

QD
1 = 32

QD
2 = 6,000

11C+11D+13C+13D

301H

303(GH) ... 30 units of module (GH)
of core 3

91A ... 9 units of item A of core 1

+31(FG)+12(ABCDEFGH)+12(ABCDFGH)+12(BCDFGH)+13(ABEFGH)

11(ABEFG)+111(ABFG)+61(BFG)+91(AFG)+

Fig. 4.11 Optimal module and item flow

f = 2, respectively. The material to recycle is 35,627 kg and 72,041 kg for
steel and metal, respectively. The hazardous disposal is only used for the
hazardous item H in core 1, i.e., XD

1,H,2w1,H = 30 · 200 = 6,000 kg. On the
contrary, the regular disposal is only used for one unit of item C and D in
core 1 and 3, i.e., 2 · 8 + 2 · 8 = 32 kg.



220 4 Flexible disassembly planning

To check whether all items that are contained in cores are allocated, the
sum of each item row together with the sum of the modules that also con-
tain the items must equal the quantity of the acquired cores. For example,
XI

2,A = 98 units of item A of core 2 are distributed as single items. In ad-

dition, XR
2,A,1 = 117 and XR

2,A,2 = 1 units go into the material box of steel
and metal, respectively, for recycling. Lastly, one unit each of the modules
ABCDEFGH (m = 1) and ABCDFGH (m = 6) are allocated into the re-
cycling box of metal (i.e., Y R

2,1,2 = 1 and Y R
2,6,2 = 1). All other modules

containing item A are not gained out of core 2. Hence, together we have
98 + 117 + 1 + 1 + 1 = 218 units of item A allocated in various ways out of
218 units of core 2.

To verify whether the required purity is achieved, we need to add the
beneficial weight of all items and divide it by the weight of all items. This
quotient has to be greater than or equal the given purity level ωr. For
recycling box r = 1 the beneficial weight of the items and the modules is

∑
c

Īc∑
i=1

πc,i,1wci

⎛⎝XR
c,i,1 +

Mc∑
m=1

δcmiY
R
c,m,1

⎞⎠
= π1,C,1 w1,C XR

1,C,1 + π2,A,1 w2,A XR
2,A,1 + π2,B,1 w2,B XR

2,B,1

+ π2,C,1 w2,C XR
2,C,1 + π2,D,1 w2,D XR

2,D,1 + π2,F,1 w2,F XR
2,F,1

+ π3,A,1 w3,A XR
3,A,1 + π3,B,1 w3,B XR

3,B,1 + π3,C,1 w3,C XR
3,C,1

+ π3,D,1 w3,D XR
3,D,1 + π3,E,1 w3,E XR

3,E,1 + π3,F,1 w3,F XR
3,F,1

+ (π2,E,1 w2,E + π2,F,1 w2,F)Y
R
2,49,1

= 0.5 · 8 · 23 + 0.5 · 11 · 117 + 0.5 · 11 · 117 + 0.5 · 7 · 215 + 0.5 · 7 · 215
+ 0.99 · 180 · 123 + 0.5 · 11 · 12 + 0.5 · 11 · 17 + 0.5 · 8 · 30 + 0.5 · 8 · 30
+ 1 · 36 · 30 + 0.99 · 180 · 30 + (1 · 40 + 0.99 · 180) 2

= 32,064.5 kg. (4.120)

This beneficial weight is compared with the material weight of QR
1 =

35,627 kg, which results in a percentage of 32,064.5
35,627 = 90.001%. This ex-

ceeds the required level of 90% a little bit and is therefore feasible. It can
be assumed that this purity constraint is limiting, i.e., when reducing the
purity limit the solution changes. This is interesting, because this material
has a higher price so that there should be an incentive to place more ma-
terial here than in the metal mix box. Obviously, the purity requirements
are relatively high compared to the incoming cores. The purity level of box
r = 2 is 61,897.3

72,041 = 85.920%, i.e., well above 85%.
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An interesting fact is that module m = 1 of core c = 2 is allocated in
the recycling box r = 2 for metal. This nicely illustrates a possible and an
economic beneficial decision of recycling a whole core without spending any
resources on disassembling it. Of course, the question is if a forklift truck can
be recycled as a whole. But it illustrates the flexibility of the modelling. If
a complete core must not be recycled, the model can be modified by setting
the decision variable zero, e.g., Y R

c,1,r = 0 ∀ r. Furthermore, we notice that
quite a few modules of core 1 are allocated into box r = 2, but none of them
contains item H. This is of course prohibited by the fact that item H of core
1 is hazardous.

The inclusion of the condition of the cores is a further interesting as-
pect—especially with modules. To discuss the result we focus on core c = 2,
because 90 units of module EF are sold for reuse. This presupposes that
both items E and F in those modules are genuine and functioning. From
the 218 units of core 2 we expect (1−ζ2,E)(1−η2,E)(1−ζ2,F)(1−η2,F)Q

C
2 =

(1 − 0)(1 − 0.01)(1 − 0)(1 − 0.05) · 218 = 205.03 to be with a genuine
and functioning item combination of E and F. This is clearly no limita-
tion for the current solution. In total (1 − 0)(1 − 0.01) · 218 = 215.82 and
(1 − 0)(1 − 0.05) · 218 = 207.1 units of item E and F, respectively, are
expected to be genuine and functioning. But when disassembling the sin-
gle items damage might occur. The percentages of damaging the items are
given with θ2,E = 0 and θ2,F = 0.01. Of the 205.03 possible genuine and
functioning modules 90 are chosen. Hence, 115.03 units remain. Reducing
the numbers of available items E and F by the 90 units contained in the
module results in 125.82 and 117.1 remaining items, respectively. In order to
meet the demand for the item E, the items need to be disassembled. Here,
they might be damaged, but not item E (θ2,E = 0). Thus, the XI

2,E = 125
units of item E can be distributed. For item F no explicit demand exists.
Hence, no question of damaging during the disassembly process arises, be-
cause this is irrelevant for recycling or disposing.

If there had existed a demand, the upper bound of items F of core 2 could
have been calculated as follows. The possible 117.1 genuine and functioning
units are taken off modules. Thereby, one per cent is damaged (θ2,F = 0.01).
This leaves us with 117.1 · (1 − 0.01) = 115.93, which means that at most
further 115 units of item F could be used for item distribution. The difference
of 117− 115 = 2 units then needs to be recycled or disposed of. But, since
no demand exists, no item F will be distributed.

Expanding the view to the material recycling leads to three further mod-
ules used of core 2. These three modules are ABCDEFGH, ABCDFGH,
and BCDFGH. These three together with EF are planned for material re-
cycling in different material boxes (Y R

2,49,1 = 2, Y R
2,1,2 = 1, Y R

2,6,2 = 1, and
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Y R
2,10,2 = 1). In order to recycle the modules they must not contain the

so-called wrong material. Otherwise, they can only be disposed of. Wrong
material appears only with non-genuine items. Thus, when all consisting
items of a module are genuine and not of the wrong material at the same
time, the module can be recycled. An item i is non-genuine and of the
wrong material with a probability of ζci ιci. Therefore, with a probability of
(1−ζci ιci), it is not non-genuine and of the wrong material at the same time.
This probability multiplied for all items in the module gives the expected
number of modules that can be used for recycling. In the example solution
regarding module ABCDFGH this is 100%, because in core 2 no wrong ma-
terial does exist (see Table 3.5). Obviously, all modules ABCDFGH of core
2 could be recycled. To illustrate the aspect, we take module ABCDEFGH
(m = 1) of core 3. The expected fraction of completely recyclable modules is∏

i∈{A,B,C,D,E,F,G,H}(1−ζ2,i ι2,i) = (1−0.1 ·0)(1−0.1 ·0)(1−0.15 ·0.01)(1−
0.15 · 0.01)(1− 0 · 0)(1− 0 · 0)(1− 0 · 0)(1− 0 · 0) = 0.997. This means that
at most �0.997 · 31	 = 30 units could be recycled of module 1 of core 3.

Coming back to core 2, any of the modules ABCDEFGH, ABCDFGH,
BCDFGH and EF as well as all items can be used for recycling, because
of no occurrence of wrong material in core 2. The distribution of items E
and F is already discussed above. The items A, B, C, and D are not present
in modules to be distributed. Hence, the limitation equals the one of the
complete disassembly planning. Of all 218 units we can expect (1−0.1)(1−
0.5)(1− 0)218 = 98.1 units to be genuine, functioning, and undamaged for
each of the four items. Taking a look at the solution we find 98 and 97
units for item A and B, respectively, planned for distribution, because of an
existing demand. Item C and D are not demanded, hence no distribution is
planned.

Item H is also not demanded for distribution. But item G is demanded.
The quantity of item G to be distributed is limited by a defective rate of
one per cent. Hence, (1−0)(1−0.01)(1−0)218 = 215.82 units are expected
to be genuine, functioning, and undamaged. This is exactly the number we
find in the solution (XI

2,G = 215). All remaining single items can be used
and are used for recycling, i.e., either for steel or metal material recycling.
In addition, the planned workload results in 2,200 h which equals exactly
the given limitation L̄.

This first illustrative example for the flexible disassembly shows the possi-
bilities of this approach. Given several cores the optimal disassembly depths
and quantities are determined under the above discussed assumptions to
achieve the maximal profit out of the item and module revenues as well
as material revenues minus the acquisition, disassembly, and disposal cost.
The obtained solution does not reveal the precise disassembly state for each
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unit of a core, yet. This is discussed in Sect. 4.4. But prior to this we take
a closer look at two things. One is the gain of the profit introduced by the
flexible disassembly planning compared to the complete disassembly plan-
ning. The other is the gain of the flexible disassembly planning compared
to a two-stage approach.

4.3 Benefit of flexible disassembly planning

4.3.1 Flexible vs. complete disassembly planning

After discussing the solution of the flexible planning with demanded mod-
ules, a first comparison with the complete disassembly planning shall follow
next. To demonstrate the benefit of the flexible planning, we solve the model
again, but this time without any demand for modules to be distributed, i.e.,
with QM

f and DM
f set to zero. Thus, no extra revenues can be generated

because of the modules. This means that benefits can only be caused by
saved disassembly operations for material to recycle and disposal.

The resulting revenues are 739,036.7e, the cost 731,650.15e, and thus
the profit 7,386.55e. This is remarkably greater than the profit of the com-
plete disassembly planning with only 2,632.1e (see Sect. 3.1.3.2). This in-
creasing of the profit is not only caused by decreasing cost. On the contrary,
the cost increases from 700,846.4e to 731,650.15e. Consequently, the rev-
enues increase even more. This is possible because of the time savings in
combination with the limited labour time.

The solution is given in Table 4.18. Thereby, the values in round brackets
are the solution values of the complete disassembly planning (see Table 3.9),
as long as they are different from this solution. In addition, all decision
variables (i.e., XI

ci, X
R
cir, X

D
cid, Y

R
cmr, Y

D
cmd) not explicitly listed equal zero.

Note that Y M
cm is not a decision variable anymore, because no demand exists.

Thus, the value of the variables is set to zero prior solving. From this solution
we notice an increased acquisition of core c = 2 by 12 units. This rise leads to
an increased item distribution and material recycling, because the quantity
of disposal is unchanged. The distribution quantity QI

e of each of the three
demanded items (A or B, E, and G) is increased by 12 units. Taking a look
at the values of the variables XI

2,i in Table 4.18 we notice that the quantity
of item A and B is increased by six units each. The remaining six units of
items A and B as well as 12 units of C, D, F, and H result in an increased
material recycling.
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Table 4.18 Optimal solution of flexible planning without module demand

variables representing the interfaces

QC
1 30 QI

1 228 (216) QM
1 0 QR

1 49,488 (52,610) QR
4 0

QC
2 200 (188) QI

2 227 (215) QM
2 0 QR

2 67,882 (60,500) QD
1 32

QC
3 25 QI

3 222 (210) QR
3 0 QD

2 6,000

integer variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2

c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 90 (84) 11 1 (17) 109 (104) 13 (14) . . . . . . . . .

B 13 90 (84) 11 1 (17) 110 (104) 13 (14) . . . . . . . . .

C . . . 29 198 (188) 24 (24) . . . 1 . 1 . . .

D . . . 29 195 (188) 24 (24) . 3 (0) . 1 . 1 . . .

E 29 198 (186) . 0 (1) 0 (2) 0 (25) . . . . . . . . .

F . . . 0 (30) 198 (188) 0 (25) . . . . . . . . .

G . 198 (186) 24 0 (1) . . 1 (29) 0 (2) 0 (1) . . . . . .

H . . . . 3 . . 195 (185) 24 (25) . . . 30 . .

Y R
cmr

r = 1 r = 2

c c

m 1 2 3 1 2 3

14 (ABEFGH) . . 1 . . .

26 (ACDGH) . . . . 1 .

32 (CDGH) . . . . 1 .

39 (ABFG) . . . 9 . .

44 (BFG) . . . 7 . .

46 (AFG) . . . 7 . .

48 (FG) . . . 6 . .

49 (EF) 1 2 24 . . .

A dot denotes a value of zero.

Having a look at the decision variables for the modules we notice that
of all modules only the modules 14, 26, 32, 39, 44, 46, 48, and 49 are used.
Obviously, not all of them are used in all cores. Module m = 49 occurs in
all cores and all other modules in a particular core. Adding the saved time
tJcm of all 59 modules in the solution results in
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c

∑
m

tJcm
∑
r

Y R
cmr = 7.75 · 1 + 5.875 · 1 + 5.75 · 1 + 3.250 · 9 + 3.125 · 7

+ 3.125 · 7 + 3 · 6 + 0.5 · 1 + 0.5 · 2 + 0.5 · 24
= 123.875 h. (4.121)

To disassemble one unit of core 2 completely, 9 h are necessary. Subtracting
the saved 123.875 h from the 2,192 h of the basic model and adding the 9 h
for the 12 units results in a workload of 2,176.125 h. This leaves a gap of
23.875 h to the limit of 2,200 h such that the labour time seems to be not
limiting anymore, because the gap is greater than the time to disassemble
any of the cores completely. But, when increasing the available labour time
to L̄ = 2,230 h a solution with the workload of 2,230 h and an increased profit
(7,810.1e) results. Thus, the labour time is still limiting and probably in
combination with the core condition.

This solution presented in Table 4.18 is again a good example for flexi-
ble disassembling. Taking core 1 five different modules are included in the
solution. These are 39, 44, 46, 48, and 49. Taking a look at the module
definition we notice that these modules are mutual exclusive, i.e., not two
of them can be gained simultaneously out of one unit of the core. This is a
degree of freedom that cannot be reached by a two-stage approach of first
determining the disassembly sequence and then determining the optimal
quantities.

4.3.2 Flexible vs. incomplete two-stage disassembly
planning

The second comparison is between two approaches for incomplete disassem-
bly. The two approaches are the flexible disassembly planning (presented
here) and a two-stage approach, with first determining the optimal disas-
sembly sequence (and state) and afterwards the optimal quantities.37 The
problem with the two-stage approach is to decide what the criterion for an

37 Remember, several sequences can lead to one disassembly state, because the state is the
result of the disassembly, i.e., the gained modules and items. Hence, when a sequence is
determined the state is automatically determined, too. But the opposite is not necessarily
true. One example of a similar two-stage approach is the determination of a disassembly
state using goal programming in the first stage and the multi-core planning maximising
the profit in the second phase. Cf. Xanthopoulos/Iakovou (2009): On the optimal
design of disassembly .
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optimal disassembly sequence is. Several criteria exist in the literature, e.g.,
disassembly time, profit, removals, cost, and orientation changes.38

But among these approaches, we cannot select one that results coercively
in the optimal disassembly state for our problem. This is because not all of
the aspects we consider are integrated in these approaches found in the lit-
erature. Therefore, we integrate the state selection into the above presented
model. Thus, it is certain that the optimal single state for our problem
is found. Hence, all other existing sequence planning approaches will most
likely result in a suboptimal result with regard to our planning problem.

The modification is realised by an inclusion of binary variables to assure
that only one of the possible states per core is selected. Thereby, we have to
keep in mind, that a state might not contain only one module. The binary
variable has to assure that only one node of the disassembly state graph is
selected. One such node is the one representing the complete disassembly.
Hence, the lower bound of the solution is that of the complete disassembly.
Of course, we expect finding a solution with a higher profit, than of the
complete disassembly planning. Otherwise, the extra effort of determining
the sequence would not be beneficial.

The favoured design to model this aspect is by extending the earlier de-
veloped model. Thus, all constraints can stay unchanged. To incorporate
the limitation to a state a binary variable is introduced. This is denoted Ucs

for every core c and state s of the disassembly state graph. Each state is
characterised by a unique module and single item combination. Using the
disassembly state graph in Fig. 4.4 and numbering the states in increas-
ing order beginning at the top we have state s = 1 representing the whole
core, i.e., no disassembling takes place. State s = 18 represents the disas-
sembly sequence that results in the combination “A.B(EF)(CDGH)”. The
last state s = 60 does not contain any modules. That means it stands for
the complete disassembly. For each particular core an individual optimal
disassembly state can exist and therefore the binary variable can be set for
every core c individually. The number of states per core is denoted by S̄c.
In our example this is S̄c = 60 ∀ c.

The above mentioned unique combination of modules and items of a
state needs to be stored to be used in the optimisation. We achieve this
with two arrays γI

cis and γM
cms for items and modules, respectively. For each

state s and core c a value of one represents that the item i and module

38 Cf. Go et al. (2012): Genetically optimised disassembly sequence, Tripathi et al.
(2009): Disassembly modeling and sequencing , Srinivasan/Gadh (2002): Selective dis-
assembly sequence with geometric constraints, Moore/Güngör/Gupta (2001): Petri
net approach to disassembly process planning, and Lu et al. (2008): A multi-objective
disassembly planning with ACO , respectively.
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Table 4.19 Module state combinations for the three cores

m states s m states s m states s m states s

1 1 14 15 27 31 40 48
2 2 15 16 28 32 41 49
3 3 16 17 29 34 42 33, 50
4 4 17 19 30 35 43 36, 51
5 5 18 20 31 37 44 52
6 6 19 21 32 18, 38 45 41, 53
7 7 20 22 33 39 46 54
8 8 21 23 34 40 47 47, 56
9 9 22 24 35 42 48 57
10 10 23 26 36 43 49 11, 18, 25, 28, 33,
11 12 24 27 37 25, 44 36, 41, 47, 55, 58
12 13 25 29 38 28, 45 50 55, 59
13 14 26 11, 30 39 46

Module m = 49 is present in ten states.

m is the result of the disassembly in this state. The state s = 18 results
in the combination “A.B(EF)(CDGH)”. Thus, the values γI

c,A,18, γ
I
c,B,18,

γM
c,32,18, and γM

c,49,18 have a value of one. All other values for γM
cms and γI

cis

for this state of the particular core c are 0. The complete information for
the modules is listed in Table 4.19. Since all three cores are in the example
structurally identical, the module state pairs (m, s) apply to all three cores
identically. All other entries of γM

cms not indicated by a given pair have a zero
value. Only the explicitly listed pairs in the table have a value equal one.
Given the module state combinations, the values of γI

cis can automatically
be calculated with the formula

γI
cis =

{
1

∑
m∈{m|γM

cms=1} δcmi = 0

0 else
∀ c, i ∈ {1, . . . , Īc}, s ∈ {1, . . . , S̄c} .

(4.122)
This means that γI

cis equals one if the item i is not in any of the modules
in state s. Let us illustrate this with state s = 18 and core c = 1. For
all items we have to look whether

∑
m∈{m|γM

cms=1} δcmi equals zero or not.
According to Table 4.19 state 18 contains the modules m = 32 and m = 49,
because γM

1,32,18 = 1 and γM
1,49,18 = 1. Adding the two vectors of the module

definition matrix δ1,32,i and δ1,49,i results in

δ1,32,i =
(
0 0 1 1 0 0 1 1

)
+ δ1,49,i =

(
0 0 0 0 1 1 0 0

)
=
(
0 0 1 1 1 1 1 1

)
. (4.123)
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We see that only the first two entries representing items A and B equal
zero. Hence, the values γI

1,A,18 and γI
1,B,18 equal one and the remaining six

γI
1,C...H,18 equal zero.
To add the necessary constraints to the existing model two possible ways

shall be discussed in the sequel. The first approach limits all decision vari-
ables for quantities of modules and items that are not in the state to zero.
This is via the sum over the relevant variables and not for every variable
individually. This means that for any selected state s the sum over all non-
contained modules plus the non-contained items has to be zero.

∑
m∈{m|γM

cms=0}

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)

+
∑

i∈{i|γI
cis=0}

(
XI

ci +
∑
r

XR
cir +

∑
d

XD
cid

)
= 0 (4.124)

The fact that an item or module is contained in the state is stored in the
parameter γI

cis and γM
cms. The modules and items contained in the state are

not limited here. The state selection is achieved by the binary variable Ucs.
A selected state is denoted by Ucs = 1. Hence, when the above sum must
be zero, we can also write

∑
m∈{m|γM

cms=0}

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)

+
∑

i∈{i|γI
cis=0}

(
XI

ci +
∑
r

XR
cir +

∑
d

XD
cid

)
≤ (1− Ucs) . (4.125)

This constraint is also applied to the unselected states with Ucs = 0. The
problem that then arises is an unwanted limitation in the following man-
ner. Assuming state 18 is selected (U1,18 = 1) and all other states not. In
addition, we expect a quantity of 100 units to be distributed of item A
(XI

1,A = 100). Taking a look at the constraint for state s = 1, only module
m = 1 exists and all other quantities are limited by
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∑
m∈{m|γM

1,m,1=0}

(
Y M
1,m +

∑
r

Y R
1,m,r +

∑
d

Y D
1,m,d

)

+
∑

i∈{i|γI
1,i,1=0}

(
XI

1,i +
∑
r

XR
1,i,r +

∑
d

XD
1,i,d

)
≤ (1−U1,1) = (1−0) = 1 .

(4.126)

With this constrained the quantity is limited to only one unit, if all other
quantities are zero. This is not desired. Therefore, the limitation of one has
to be increased so that it is not limiting anymore. This is done by multiplying
the right hand side with an arbitrary value M . This value should be at
least 100 to have the 100 units. To be more precise, the value of M should
be maxc{Īc QC

c } at least. In our example the cores are not limited by an
upper limit, which leaves us with educated guessing. In the sequel we set
M = 3,000.

Including this M in the constraint and assuring that only one state per
core can be selected the set of constraints is as follows.

∑
m∈{m|γM

cms=0}

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)

+
∑

i∈{i|γI
cis=0}

(
XI

ci +
∑
r

XR
cir +

∑
d

XD
cid

)
≤ M(1− Ucs)

∀ c, s ∈ {1, . . . , S̄c} (4.127)∑
s

Ucs = 1 ∀ c (4.128)

Ucs ∈ {0, 1} ∀ c, s ∈ {1, . . . , S̄c} . (4.129)

The number of added constraints is
∑

c

(
S̄c + 1

)
, neglecting the domain

constraints of Ucs.
The second mentioned approach is as follows. The quantity of modules

and items can only be greater than zero if a state containing this module or
item is selected. To give an example, module m = 32 is the focused one. In
order to have a quantity greater than zero for this module in core c = 1 the
state s = 18 has to be selected. If only state s = 17 is selected, the module
m = 32 cannot be gained. We see that the selection variable Ucs functions
as a switch, again. This can be expressed by
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Y M
1,32 +

∑
r

Y R
1,32,r +

∑
d

Y D
1,32,d ≤ M

∑
s∈{s|γM

1,32,s=1}
U1,s . (4.130)

As soon as a state is selected that contains the focused module the quantities
can be greater than zero. Taking module m = 49 in the focus we find that
we can choose state 18, 33, or any other state module 49 exists in to set
the quantity limit for the decision variables Y M

1,49, Y
R
1,49,r, and Y D

1,49,d greater
than zero. The same applies to the items. The adequate value for M can be
found in the same way as discussed above. The corresponding constraints
are

Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd ≤ M

∑
s∈{s|γM

cms=1}
Ucs ∀ c,m ∈ {1, . . . ,M c}

(4.131)
and

XI
ci+

∑
r

XR
cir+

∑
d

XD
cid ≤ M

∑
s∈{s|γI

cis=1}
Ucs ∀ c, i ∈ {1, . . . , Īc} . (4.132)

To limit the number of selected states to just one, Eq. (4.128) can be used
right away. But with this approach the flexibility of modelling is increased
in a way that the decision maker can specify the number of states to select,
i.e., to limit the number of disassembly states. The allowed number of states
shall be given by S̃c for each core. The resulting constraint is then∑

s

Ucs ≤ S̃c ∀ c . (4.133)

Setting all S̃c = 1 we have the same constraint as in Eq. (4.128). The
limitation of the domain of Ucs to binary values completes the second set
of constraints.

Ucs ∈ {0, 1} ∀ c, s ∈ {1, . . . , S̄c} (4.134)

The number of added constraints is
∑

c

(
M c + Īc + 1

)
, when using this sec-

ond set and neglecting the domain constraints of the variables.
In our example the number of modules and items of each core is 3 (50 +

8) = 174 whereas the number of states is 3 ·60 = 180. Hence, the second set
of constraints results in fewer constraints to be added than the first set. In
general this is a good reason to choose the second constraint set. A further
reason for the second set—independent of the number of constraints—is
the possibility to adjust S̃c to any desired number of allowed disassembly
sequences per core. This will be discussed in more detail in Sect. 4.3.3.
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Table 4.20 Optimal solution of best two-stage planning

variables representing the interfaces

QC
1 30 QI

1 232 (242) QM
1 30 QR

1 50,948 (35,627) QR
4 0

QC
2 200 (218) QI

2 198 (154) QM
2 28 (90) QR

2 60,502 (72,041) QD
1 32

QC
3 31 QI

3 198 (215) QR
3 0 QD

2 6,000

integer variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2
c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 (9) 90 (98) 13 17 (0) 110 (117) 18 (12) . 0 (1) 0 (5) . . . . . .
B 13 (12) 90 (97) 13 17 (0) 110 (117) 18 (17) . 0 (1) . . . . . . .
C . . . 29 (23) 200 (215) 30 0 (6) . . 1 . 1 . . .
D . . . 29 (0) 200 (215) 30 0 (29) . . 1 . 1 . . .
E 0 (29) 198 (125) . . . 29 (30) . 2 (0) 2 (0) . . . . . .
F . . . . 200 (123) 31 (30) . . . . . . . . .
G . 198 (215) . 1 (0) . . 29 (0) 2 (0) . . . . . . .
H . . . . . . . 200 (215) . . . . 30 . .

Y M
cm Y R

cmr

r = 1 r = 2
c c c

m 1 2 3 1 2 3 1 2 3

47 (GH) . . 30 . . . . . 1 (0)
49 (EF) 28 (0) 0 (90) . 2 (0) 0 (2) . . . .

A dot denotes a value of zero.

Solving the model—including the module demand as given in Table 4.15—
with the first or second (with S̃c = 1) constraint set added to the flexible
planning model, results in a solution where only one disassembly state per
core is selected. The resulting profit is 22,505.3e. The selected states are 58,
60, and 56 for the cores 1, 2, and 3, respectively. (The corresponding state
selection variables U1,58, U2,60, and U3,56 are one and all other zero.) The
solution is listed in the known form in Table 4.20. The values in brackets are
the ones from the flexible planning as long as they are different to the values
of this solution. The revenues are 771,616.7e and the cost 749,111.4e. The
resulting profit of 22,505.3e is significantly larger than that of just complete
disassembly. Note that the demanded modules increase the profit compared
with just complete disassembly where there exist no modules. In compari-
son to the flexible planning we notice an expected decrease from 30,739e
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to 22,505.3e. Note that this difference is the smallest possible between the
flexible and any two-stage planning for this example.

When comparing the two solutions in more detail we see that less cores
are acquired. Also, the quantities of distributed items are slightly increased
and a shift towards item position e = 2 can be noticed. Whereas the item
distribution is increased, the module distribution is drastically reduced from
90 to 28 units of module demand position f = 2. Taking a look at the
material recycling quantities a shift from material metal (r = 2) to steel
(r = 1) occurs. The metal recycling quantity is reduced by about 11,000 kg
and at the same time the quantity for the steel recycling is increased by
about 15,000 kg. This is interesting, because the steel recycling requires a
higher purity than the metal one and more items are more beneficial with
respect to the purity requirement. The quantities for disposal stay identical
with 32 kg and 6,000 kg.

The state 58 of core 1 contains the module EF and the single items A,
B, C, D, G, and H. Thus, of core 1 no other module than EF can appear
anywhere in the solution. For core 2 the complete disassembly is chosen,
which means that no module of core 2 can exist. Hence, the 90 modules
of the flexible planning of core 2 cannot be used anymore. Thus, we notice
a shift from core 2 with 90 units of module EF to core 1 with 28 units
of this module. For core 3 the state 56 is chosen, which leads to module
GH. In the solution we find 30 units to be distributed and one unit to
be recycled. Summarising the findings, we see that the flexible planning is
more profitable compared to any two-stage approach, where one disassembly
state per core is selected and the quantities determined afterwards. In the
numerical example the absolute difference is 8,233.7e, which is a decrease
of about 27%.

4.3.3 Optimal flexible disassembly planning with
minimal number of sequences

With the inclusion of the constraints (4.131) through (4.134) into the flexible
disassembly planning model the number of states per core can be limited.
In the section above the limitation was set to one per core, to determine
the upper bound of any two-stage incomplete disassembly planning. In the
optimal solution of the flexible planning five, five, and two states are neces-
sary for core 1, 2, and 3, respectively. This can be derived from the solution
in Table 4.17 in conjunction with the state determination in the subsequent
Sect. 4.4. Starting with core 1 the modules 28, 39, 44, 46, and 48 are in-
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cluded in the solution with the quantities 1, 11, 6, 9, and 3, respectively.
These modules are mutual exclusive, because they all contain the item G.
Hence, not two of them can occur parallel. This gives 1+11+6+9+3 = 30
units which equals the acquired quantity of QC

1 = 30. Thus, no extra state
with complete disassembly is planned. The corresponding states for the se-
lected modules are 32, 46, 52, 54, and 57.

For core 2 we have the modules 1, 6, 10, and 49 in the solution. The
corresponding quantities of these are 1, 1, 1, and 92 units. They are mutual
exclusive, too. Therefore, the states 1, 6, and 10 are necessary one time each
and state 58 (for module 49) 92 times. Comparing these 92 + 3 = 95 with
the acquired quantity of 218, results in a difference of 123. This difference
is the quantity of state 60, i.e., the complete disassembly. Core 3 is listed
with the modules 14 and 47 with quantities of one and 30. The sum of the
quantities equals the quantity of the acquired core. Hence, only state 15 and
56 are selected. We see that five, five, and two states of the cores 1, 2, and
3, respectively, are required.

In general, there exist more than one optimal solutions for MILP of this
size. Given the model extension, we would like to know how we can achieve
the optimal solution with the least number of sequences. With this require-
ment the problem has two objective functions—one minimisation and one
maximisation. This is the simplest case of multi-criteria or multi-objective
programming. Several approaches exist to solve such problems. But the two
basic ones suffice to answer the question above. One of them is the lexico-
graphic (or preemptive) method.39 With this method the objectives have
to be ordered according to their importance to the decision maker. The
most important objective is the profit maximisation and the less impor-
tant the minimal number of states required for this profit maximal solution.
According to the lexicographic order, the problem with the most impor-
tant objective is solved neglecting the less important objectives. For this,
no state limiting constraints are necessary and the optimal solution of the
flexible disassembly planning with 30,739e is the result (see Sect. 4.2.4).

With this information of the optimal value of the first objective we focus
on the objective with the next lower priority, i.e., the number of sequences.
Thereby, the profit P is fixed to the value P = 30,739 in all following opti-
misations with lower priority objectives. The objective function is changed
to the one of the next less important objective, i.e., to minimise the number
of states.

39 Cf. Taha (2011): Oprations Research, pp. 342 et seq., Suhl/Mellouli (2009): Opti-
mierungssysteme, pp. 120 et seq., Domschke/Drexl (2011): Einführung in OR, pp. 57
et seq., and Yager/Gumrah/Reformat (2011): PET for lexicographic multi-criteria
service selection, p. 932.
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Minimise
∑
c

S̃c (4.135)

The model to solve is that with the limiting number of states, i.e., the
flexible planning model including the constraints (4.131)–(4.134). Thereby,
the parameter S̃c is changed into a decision variable that appears in the
objective function.40 Consequently, the number of states is no longer limited
to one per core.

When relaxing the limitation of sequences to more than one, an additional
constraint should be introduced. For specifying just the number of sequences
it is not necessary, but it is helpful for interpreting the solution. Let us con-
sider state 18 with “AB(EF)(CDGH)” and state 60 with “ABCDEFGH”.
When these states are selected with a value of one of the binary variable
Ucs, the quantities for the modules EF and CDGH as well as all items can
be greater than zero. This however does not prevent a solution where the
quantity of both or either module is zero. Of course, when both module
quantities are zero and the number of sequences should be minimised, only
state 60 is activated. Therefore, we assume that the quantities of module
CDGH and EF are zero and ten, respectively, as an example. In addition, 20
units of the core are acquired. Hence, only module EF and single items are
in the solution. But this solution is not gained by state 18 and 60. Because,
if state 18 is activated and ten units of module EF are generated, ten units
of module CDGH are generated, too. Thus, a state without the module
CDGH and only with module EF, i.e., state 58, together with state 60 is
the correct state combination to generate the module and item quantities.
We see, that it might be helpful to force an “activation” of each module in
a selected state. This can be achieved by adding

Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd ≥

∑
s∈{s|γM

cms=1}
Ucs ∀ c,m ∈ {1, . . . ,M c} .

(4.136)
In combination with the minimisation of the number of sequences the solu-
tion now contains activated states, which are necessary. Solving this model
leads to an optimal value of 11. This means that in total 11 states for all
three cores are required and the profit is still the optimal one.41

40 Alternatively, the objective function can be modelled without the S̃c by just using∑
c

∑S̄c
s=1 Ucs to be minimised.

41 This approach can also be seen as goal programming, because the less important ob-
jectives are optimised with the goal to maintain the optimal value of the more important
objectives.
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A further approach is the programming with weighted objectives.42 The
advantage is the simultaneous consideration of all objectives. On the other
hand, the drawback is the determination of adequate weights. When we
assume that the focus is clearly on the profit and that only a magnitude up
to 10−2 is relevant we can easily set a fairly small weight to the number of
sequences. Thus, the influence on the profit is negligible if the weight is set
to, e.g., 10−4. Only with more than 100 states we would have an influence
on the profit by 10−2.43 The modified objective function for the weighted
programming of our example is

Maximise P − 0.0001
∑
c

S̃c (4.137)

or

Maximise P − 0.0001
∑
c

S̄c∑
s=1

Ucs . (4.138)

Otherwise, the model is equal to the one with the limiting number of states
and S̃c being a decision variable. Solving this model to optimum the same
solution results as given above with the lexicographical programming. For
our problem the weighted programming returns the optimal result in less
time. Mainly, because of the fact that the complex model has to be solved
only once compared to the lexicographical approach. In addition, only the
profit is fixed in the second run of the lexicographical approach, which leaves
a lot of decision variables to be determined. Of course, this does not have
to be the case for all problems.

The resulting minimal number of states for the optimal profit are five,
four, and two. For core 1 the states 32, 46, 52, 54, and 57, for core 2 the
states 1, 6, 58, and 60, and for core 3 the states 15 and 56 are selected. The
resulting modules are 28, 39, 44, 46, and 48 of core 1, 1, 6, and 49 of core
2, as well as 14 and 47 of core 3. The optimal solution with only 11 states
in total is listed in Table 4.21. The quantities of the interfaces are identical.
In addition, a new module m = 14 instead of module 10 is included in
the solution. Also, some changes of quantities of item flow variables can be
noticed. In general this solution is to be preferred compared to the initial
flexible planning result, because less states and sequences are necessary.
But, the solving takes more time, because the model is more complex.

42 Cf. Suhl/Mellouli (2009): Optimierungssysteme, pp. 120 et seq., and Domschke/
Drexl (2011): Einführung in OR, pp. 58 et seq.
43 To estimate the magnitude of the objectives, the flexible planning model can be solved
without forcing integral values for the decision variables.
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Table 4.21 Optimal solution with minimum number of states

variables representing the interfaces

QC
1 30 QI

1 242 QM
1 30 QR

1 35,627 QR
4 0

QC
2 218 QI

2 154 QM
2 90 QR

2 72,041 QD
1 32

QC
3 31 QI

3 215 QR
3 0 QD

2 6,000

integer variables

X I
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2

c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 11(9) 97(98) 13 . 108(117) 13(12) . 10(1) 4(5) . . . . . .

B 11(12) 97 13 . 117 17 . 1 . . . . . . .

C . . . 29(23) 215 30 . (6) . . 1 . 1 . . .

D . . . 5(0) 215 30 24(29) . . 1 . 1 . . .

E 29 125 . . . 30 . . . . . . . . .

F . . . . 123 30 . . . . . . . . .

G . 215 . . . . . . . . . . . . .

H . . . . . . . 215 . . . . 30 . .

Y M
cm Y R

cmr

r = 1 r = 2

c c c

m 1 2 3 1 2 3 1 2 3

1 (ABCDEFGH) . . . . . . . 1 .

6 (ABCDFGH) . . . . . . . 2 (1) .

10 (BCDFGH) . . . . . . . . (1) .

14 (ABEFGH) . . . . . . . . 1

28 (ABEFG) . . . . . . 1 . .

39 (ABFG) . . . . . . 9 (11) . .

44 (BFG) . . . . . . 9 (6) . .

46 (AFG) . . . . . . 9 . .

47 (GH) . . 30 . . . . . .

48 (FG) . . . . . . 2 (3) . .

49 (EF) . 90 . . 2 . . . .

A dot denotes a value of zero.

A benefit of this model is the choice of the decision maker, how relevant
the number of states is. If for example the cost for each further state is
200e the weight is set to 200 instead of 10−4 and the solution of the model
determines the optimal number of states and quantities. Note that in this
case the term 200

∑
c S̃c should be added to the cost and not as a tuning

term in the objective function next to the profit. Solving the numerical
example with this weight the optimal number of sequences would be four,
instead of 11.
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Fig. 4.12 Profit development depending on the allowed number of states

A further interesting insight for the decision maker is possible with this
model. This is how the profit develops from three to 11 allowed states for the
three cores. Therefore, we maximise the profit (without any extra terms),
keep the S̃c as a decision variable, and add a further constraint that limits
the sum of the S̃c from three through 11 for our example.∑

c

S̃c ≤ 3, . . . , 11 (4.139)

The resulting profit and the allocation of the states is depicted in
Fig. 4.12. The additional numbers of states from three to five are all used
for core 2. The next extra state is used for core 1. From six to seven possible
states each extra state goes into core 3 and so on. Looking at core 3, we
notice that the used states are relatively constant. From the beginning (one
state per core) up to the end (11 states overall) state 56 is part of the solu-
tion. Once state 15 is added (seven states allowed) it also stays part of the
solution up to the end. In the other two cores the planned states fluctuate
more when adding an extra possible state. A good example is from eight
to nine possible states for the three cores, where even the number of states
for core 2 decreases so that for core 1 two states are added. Note that there
exist several optimal solutions per allowed number of states with most likely
different state allocations.
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Table 4.22 Solutions depending on allowed number of states

number
of

states

QC
c QI

e QM
f QR

r QDd

c e f r d

1 2 3 1 2 3 1 2 1 2 3 4 1 2

3 30 200 31 232 198 198 30 28 50,948 60,605 0 0 32 6,000
4 30 216 31 246 152 213 30 90 36,213 70,679 0 0 32 6,000
5 30 217 31 244 153 214 30 90 35,772 71,508 0 0 32 6,000
6 30 217 31 246 153 214 30 90 35,993 71,265 0 0 32 6,000
7 30 218 31 233 154 215 30 90 35,727 72,040 0 0 32 6,000
8 30 218 31 235 154 215 30 90 35,677 72,068 0 0 32 6,000
9 30 218 31 238 154 215 30 90 35,677 72,035 0 0 32 6,000
10 30 218 31 241 154 215 30 90 35,627 72,052 0 0 32 6,000
11 30 218 31 242 154 215 30 90 35,627 72,041 0 0 32 6,000

What is also very interesting for the decision maker is the resulting max-
imal profit. It increases with the allowed number of states up to the optimal
number of 11 states. One would expect, that the increase of the profit de-
creases with the allowed number of states, i.e., the profit increase from
four to five is 30,398.4 − 30,213.7 = 184.7e whereas the increase from five
to six is smaller with 30,533.4 − 30,398.4 = 135e. But, for example from
seven to eight (19.1e) compared to eight to nine (54.9e) this is not the
case. Nevertheless, the tendency of a decreasing profit increase can generally
be assumed. The biggest profit increase appears from three to four allowed
states. This results mainly from the possibility to distribute more demanded
modules m = 49. With three states only QM

2 = 28 units are distributed (see
Table 4.20) and with four states already 90 units are distributed (see Ta-
ble C.9 in appendix C.5). The solutions for the allowed number of states
four through ten can be found in appendix C.5.

In Table 4.22the ingoing (QC
c ) and outgoing quantities (QI

e, Q
M
f , QR

r ,

QD
d ) of the company are summarised for the different allowed number of

states. The disposal quantities stay unchanged. Always the same amount
of items (never a module) is disposed of. Of core 1 and 3 the quantity
of acquired cores stays identical with 30 and 31, respectively. Only core 2
shows increasing quantities of acquired cores. For a number of at least four
states the demanded quantity of 90 modules is distributed. In general, for
the items to distribute and the recycling quantity a trend of increasing item
distribution with decreasing recycling quantity for an increasing allowed
number of states can be detected.
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(. . . )m . . . Module m

Fig. 4.13 Disassembly state graph of example one

4.4 Determining concrete disassembly path

4.4.1 Determining disassembly state quantities

4.4.1.1 Mathematical programming approach

With the solution of the flexible disassembly planning, i.e., knowing the op-
timal quantities of cores, items, modules, material, and waste, the planning
task is not completed yet. What is missing is the specific information for the
workers how to disassemble each incoming unit of a core in order to realise
the optimal planning result. To get this information two approaches are pre-
sented in the sequel. Firstly, a mathematical model is developed, which can
be solved with standard optimisation software for MILP. Secondly, based on
the mathematical model, an algorithm is presented, which creates a smaller
set of equations and avoids using solver software. But, before we start with
the two approaches, two small examples shall be introduced to discuss the
considerations.

The number of disassembly states of both exemplary cores is about equal.
The first one represents a core where the items can only be taken off suc-
cessively. This means that no two modules are created when separating a
connection. It results in a disassembly state graph where in each state a
unique module exists. (Again, the last state is an exception.) The graph is
depicted in Fig. 4.13 and it consists of 12 states and 11 modules. The sec-
ond core is highly modular. This means by separating a connection many
modules are created. This can be seen in Fig. 4.14. This core can be disas-
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Fig. 4.14 Disassembly state graph of example two

sembled with 17 states and only five modules exist.44 The explicit listing of
the module definition matrix δcmi, module state combination matrix γM

cms,
and item state combination matrix γI

cis is displayed in appendix C.6. All
the information can be directly extracted from the two graphs.

To determine the quantities for each state a variable QS
cs is introduced,

which represents how often a core has to be disassembled to the specific
state s. Thereby, the sum over all states that contain a particular module m
or item i must equal the quantity that is planned for this module or item.
The information whether an item or module results of a particular state can
be seen in the graphs and is stored in γI

cis and γM
cms. The set of equations

for all items and modules is∑
s∈{s|γI

cis=1}
QS

cs = XI
ci +

∑
r

XR
cir +

∑
d

XD
cid ∀ c, i (4.140)

∑
s∈{s|γM

cms=1}
QS

cs = Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd ∀ c,m . (4.141)

Thereby, the quantities of the states have to be non-negative integer values.

44 In comparison to the forklift truck example a lot less states and modules exist for the
same number of items the core consists of.
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QS
cs ∈ Z

∗ ∀ c, s (4.142)

The right hand side of the equations (i.e., the quantitiesXI
ci,X

R
cir,X

D
cid, Y

M
cm,

Y R
cmr, Y

D
cmd, and QC

c ) are all given data, because they are the result of the
flexible disassembly planning. The task is now to find a feasible solution.
In some cases there might exist several solutions and any of them is as
good as another one, in general. Because all relevant quantities are core
specific, there exist no dependencies among the cores for determining the
state quantities. Thus, the set of equations can be solved for each core
individually, which reduces the complexity.

If the decision maker is indifferent between any of the feasible solutions,
any can be chosen. If on the other hand the decision maker prefers a solution
with fewer sequences, a little extension is necessary. This extension includes
an objective function (to be minimised) and binary variables Ucs. Each time,
the quantity of a state QS

cs is greater than zero the binary variable has to
take a value of one. Otherwise, it can be zero. The extended mathematical
model is as follows.

Minimise
∑
s

Ucs ∀ c (4.143)

s.t.
∑

s∈{s|γI
cis=1}

QS
cs = XI

ci +
∑
r

XR
cir +

∑
d

XD
cid ∀ c, i (4.144)

∑
s∈{s|γM

cms=1}
QS

cs = Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd ∀ c,m (4.145)

QS
cs ≤ QC

c Ucs ∀ c, s (4.146)

Ucs ∈ {0, 1}, QS
cs ∈ Z

∗ ∀ c, s (4.147)

Again, the solving is done for each core separately, because no dependencies
of the state quantities between the cores exist. This fact is expressed by the
term ∀ c in the objective function.

4.4.1.2 Successive approach

The resulting set of equations (according to Eqs. (4.140) and (4.141)) for
the two examples is listed in the sequel. Because only one core is considered,
we neglect the index c. For the first example the mentioned set of equations
is
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0 1 0 0 0 1 1 1 0 0 0 1
0 0 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 0 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QS
1

QS
2

QS
3

QS
4

QS
5

QS
6

QS
7

QS
8

QS
9

QS
10

QS
11

QS
12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XA

XB

XC

XD

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.148)

Thereby, Xi and Ym denote the sums XI
ci +

∑
r X

R
cir +

∑
d X

D
cid and

Y M
cm +

∑
r Y

R
cmr +

∑
d Y

D
cmd, respectively.

This system of equations has more equations than variables and is there-
fore over-determined. Checking the rank of the coefficients matrix45 of the
dimension (m + i) × s results in 12 for the first example.46 Given the full
rank of the coefficients matrix A equalling the number of states, we can cal-
culate the QS

s right away. Based on the system of equations in Eq. (4.148)
with coefficient matrix A, quantity state vector qS, and the right hand side,
where the right hand side is a combination of x and y, we can calculate

AqS =

(
x
y

)
(4.149)

ATAqS = AT

(
x
y

)
(4.150)

(
ATA

)−1
ATAqS =

(
ATA

)−1
AT

(
x
y

)
(4.151)

qS =
(
ATA

)−1
AT

(
x
y

)
, (4.152)

where AT is the transposed of A,
(
x y

)T
is the vector that holds all Xi and

Ym, and qS is the vector of all QS
s .

45 The coefficient matrix A is generated by putting the state definition for items γI
cis on

top of the ones for modules γM
cms. The result is A =

(
γI
cis γM

cms

)T
.

46 Similar to the model size calculation the term (m+i)×s denotes (
∑

m 1+
∑

i 1)×
∑

s 1.
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Let us assume the solution gained by the flexible planning is x =
(2 0 3 6)T and y = (1 2 0 3 6 0 0 0 0 0 0)T. For every zero in the vector x
and y, rows and columns of the system of equations can be eliminated. The
reason is that the state quantities must be non-negative values. With this
in mind the state quantities, having a corresponding coefficient equalling
one in matrix A, must be zero. Otherwise, the sum over the state quantities
multiplied with the corresponding row does not equal zero. This means, that
row two, seven, and ten through 15 can be eliminated, because the corre-
sponding state quantities QS

s have to be zero. The corresponding states are
three and six through 12. In addition, the columns with a state quantity of
zero (s ∈ {3, 6, . . . , 12}) are eliminated, too. Given the exemplary solution
of the flexible planning, the resulting system of equations to determine the
state quantities is reduced to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
QS

1

QS
2

QS
4

QS
5

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

XA

XC

XD

Y1

Y2

Y4

Y5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.153)

The rank of the reduced coefficients matrix is four, which equals the number
of considered states. Thus, the quantities can be determined directly with

⎛⎜⎜⎝
QS

1

QS
2

QS
4

QS
5

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎝
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3
6
1
2
3
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
1
2
3
6

⎞⎟⎟⎠
(4.154)

and we get the quantities QS
1 = 1, QS

2 = 2, QS
4 = 3, QS

5 = 6. All other equal
zero. With systems of equations like the above only one solution exists
that is feasible according to Eqs. (4.140) and (4.141), which makes any
considerations with the number of states and the introduced variable Ucs

obsolete.
The second example is different to the first one. The number of vari-

ables is higher than the equations as can be seen in the following system of
equations.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0
0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0
0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0
0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QS
1

QS
2

QS
3

QS
4

QS
5

QS
6

QS
7

QS
8

QS
9

QS
10

QS
11

QS
12

QS
13

QS
14

QS
15

QS
16

QS
17

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XA

XB

XC

XD

XE

XF

XG

XH

Y1

Y2

Y3

Y4

Y5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.155)

Hence, the coefficient matrix does not have the rank equalling the number
of states. Thus, a direct determination as described above is not possible
and one of the presented MILP should be used to either find just a fea-
sible solution or one with the minimal number of states necessary. Let us
assume the solution of the flexible planning is x = (3 3 9 9 3 3 4 4)T and
y = (2 6 0 6 5)T. Thus, row 11 can be eliminated, when setting the corre-
sponding quantity state variables for the states s ∈ {2, 3, 5, 6, 8, 9, 12, 15} to
zero. The columns with these indices s can be eliminated, too. The reduced
system of equations is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 0 1
0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 1 1
0 0 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1 0
0 1 1 0 1 0 1 0 0
0 1 1 1 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QS
1

QS
4

QS
7

QS
10

QS
11

QS
13

QS
14

QS
16

QS
17

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XA

XB

XC

XD

XE

XF

XG

XH

Y1

Y2

Y4

Y5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
9
9
3
3
4
4
2
6
6
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.156)
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Table 4.23 State priorities

State s: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Priority: 1 2 3 3 3 3 4 4 4 4 4 4 5 5 5 5 6

The rank of the coefficients matrix is five and the number of remaining
states is nine. They are not equal and therefore a feasible solution is deter-
mined with an MILP and not directly in closed form. A feasible solution to
Eq. (4.156) with non-negative and integral QS

s is QS
1 = 2, QS

4 = 4, QS
13 = 1,

QS
14 = 2, and QS

16 = 2. All other state quantities are zero. With this solu-
tion five sequences are necessary. Introducing the binary variable Ucs and
solving the MILP (i.e., Eqs. (4.143)–(4.147)) an optimal solution with only
four sequences is the result. The quantities are QS

1 = 2, QS
4 = 2, QS

11 = 4,
and QS

13 = 3. (All other are zero.)
As mentioned above, a method shall be developed, that finds a solution

for the state quantities without the use of a solver. This is illustrated with
the second example, because for cases like the first example a closed form ex-
pression to find the solution exists. The flowchart of the method is depicted
in Fig. 4.15. The starting point of the algorithm is Eq. (4.155), because the
first step is the reduction to Eq. (4.156).47 The necessary components are
the coefficient matrix A of the dimension j × s and the right hand side
vector r of length j = i + m, because it contains the solution Xi and Ym

of the flexible planning, i.e., r = (x y)T. Hence, this vector is given with
r = (3 3 9 9 3 3 4 4 2 6 0 6 5)T. The set of the states is S = {1, . . . , 17}.
In the initialisation the states need to be prioritised. A state with a bigger
module has a higher priority than a state with a smaller module. (The size
of a module is the number of containing items.) Exist more than one state
with the same module size, then a state with more modules has a higher
priority than a state with less modules. Thus, the highest priority state is
always the one with module m = 1 (the complete core) and the lowest the
state with no modules, i.e., representing the complete disassembly. The pri-
ority list for the 17 states of the example is listed in Table 4.23. We notice
that quite a few states with the same priority exist.

After the initialisation the first check is whether the right hand side con-
tains any zero values. The answer is yes, because in row j = 11 the vector r
has a zero element. Accordingly, all these rows are selected in J̃ = {11}. Fur-
thermore, all states s where the coefficient matrix Ajs has a value equalling

one of these selected rows J̃ are selected, i.e., S̃ = {2, 3, 5, 6, 8, 9, 12, 15}.

47 Of course, one can also start with Eq. (4.156).
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Start

- S is the set of all states
- Priorise states

∃j Rj = 0?

no

yes

- Select rows J̃ with Rj = 0 ∀ j ∈ J̃

- Select all S̃ ⊂ S where coefficients are 1 of rows J̃
- Set QS

s = 0 ∀ s ∈ S̃
- Delete rows J̃
- Delete columns S̃
- Update S = S/S̃

∃j ∑
s∈S Ajs = 1?

no

yes

- Select rows J̃ with
∑

s∈S Ajs = 1 ∀ j ∈ J̃

- Select all S̃ ⊂ S where coefficients are 1 of rows J̃
- Set QS

s∈{s|s∈S̃ ∧Ajs=1} = Rj ∀ j ∈ J̃

- Update Rj = Rj −
∑

s∈S̃ Ajs Q
S
s ∀ j

- Delete rows J̃
- Delete columns S̃
- Update S = S/S̃

- Select s̃ ∈ S with highest priority
- Set QS

s̃ = minj{Rj |Ajs̃ = 1}
- Update Rj = Rj −Ajs̃ Q

S
s̃ ∀ j

- Delete column s̃
- Update S = S/{s̃}

S = ∅?

yes

no

End

r Right hand side vector with elements Rj

A Coefficient matrix with elements Ajs

QS
s Quantity for state s

Fig. 4.15 Flowchart of state quantity algorithm

All the state quantity variables QS
s with s ∈ S̃ are set to zero, i.e.,

QS
2 = QS

3 = QS
5 = QS

6 = QS
8 = QS

9 = QS
12 = QS

15 = 0. The selected rows and
columns are deleted from the system and the index set S is reduced by the
selected states S̃. The resulting system is that of Eq. (4.156).

The set S = {1, 4, 7, 10, 13, 14, 16, 17} is not empty, why we start in the
beginning. The new vector r has no zero element. The next decision to
be made is whether a row in the coefficient matrix exists, that has a row
sum equalling one. This is the case, because row j = 9 is such a row.
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Again, the selected rows are all those which meet this criterion. Hence,
the set J̃ = {9} contains only one element. All states where this occurs
are also selected, i.e., S̃ = {1}. In a next step, for all selected quantity
state variables the corresponding value of the vector r is assigned. In our
example the value R9 = 2 is assigned to QS

1 , because the coefficient A9,1

equals one. Afterwards, the right hand side is updated. This means that
from all elements the amount gained by the selection of the selected states
is subtracted. For now, only row nine is updated when QS

1 = 2. The resulting
element is R9 = 0. Lastly, the selected rows and columns are deleted from
the system and the state set S is reduced by the selected states S̃.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 1 0 1
0 1 0 0 1 1 0 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 1 0 1 1 1
1 0 1 1 0 0 1 0
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QS
4

QS
7

QS
10

QS
11

QS
13

QS
14

QS
16

QS
17

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
9
9
3
3
4
4
6
6
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.157)

The set S is still not empty. We start from the beginning and find no
element Rj = 0 or a row with the row sum of one. Therefore, the state s̃
with the highest priority of all states in S is selected. We find that state
s̃ = 4 has the highest priority (see Table 4.23) in comparison to the states
7, 10, 11, 13, 14, 16, and 17. We set the quantity variable to the minimum
of the right hand side values, where a coefficient of one exists in the selected
column, i.e., QS

4 = min{9, 9, 6, 6, 5} = 5. This way at least one row with
the value zero is created and all elements of the right hand side will stay
non-negative. The vector r is updated in the following way:
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3
3
9
9
3
3
4
4
6
6
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
0
0
0
0
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
4
4
3
3
4
4
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.158)

Afterwards, the column s̃ is deleted and the set S is reduced by the selected
state s̃. ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0 1
1 0 0 1 1 0 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 1 0 1 0 1 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

QS
7

QS
10

QS
11

QS
13

QS
14

QS
16

QS
17

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
4
4
3
3
4
4
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.159)

The set S is not empty and we find a value of R11 = 0. Thus, row 11 is
eliminated and the states 7, 10 and 13 get a value of QS

7 = QS
10 = QS

13 = 0.
The corresponding row and columns are deleted and the set of states is
reduced to S = {11, 14, 16, 17}.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1
0 1 0 1
1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1
1 1 1 1
1 1 1 1
1 0 1 0
1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
QS

11

QS
14

QS
16

QS
17

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
4
4
3
3
4
4
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.160)
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The next run starts and no zero value or row sum of one exists. Therefore,
we select the state with the highest priority. This state is s̃ = 11. The value
is set to QS

11 = min{4, 4, 4, 4, 1, 1} = 1. The right hand side is updated, the
selected column deleted, and the set S reduced by the selected state.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
1 0 1
1 1 1
1 1 1
0 1 1
0 1 1
1 1 1
1 1 1
0 1 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝QS
14

QS
16

QS
17

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
3
3
3
3
3
3
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.161)

The existing zero values in r result in setting QS
14 = QS

16 = 0. The two rows
and two columns of the selected states are eliminated.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
QS

17

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
3
3
3
3
3
3
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.162)

The final run sets variable QS
17 = 3. The set S is now empty and the algo-

rithm ends. The result is QS
1 = 2, QS

4 = 5, QS
11 = 1, and QS

17 = 3. All other
state quantities are zero. In total four states are necessary. This solution is
different from the one with the MILP as given above, but nonetheless with
the same minimum number of states. Of course, the algorithm also works
with the other example as can be seen in appendix C.7.

4.4.1.3 Determining state quantities for the numerical example

Now that we developed a procedure to find the corresponding quantities,
we apply this to the forklift truck example. For each core we find 60 states,
eight items, and 50 modules. This system of equations is too big to show it
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here. But, after the first step of reducing the number of equations by rows
that have a zero value on the right hand side the size is drastically reduced.
Thus, for core 1 the system of equations is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1
0 0 0 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
QS

1,32

QS
1,46

QS
1,52

QS
1,54

QS
1,57

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1,A

X1,B

X1,C

X1,D

X1,E

X1,H

Y1,28

Y1,39

Y1,44

Y1,46

Y1,48

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
12
30
30
29
30
1
11
6
9
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.163)

when we take the optimal solution of the flexible planning with 12 states.
The coefficient matrix has rank five, which implies that the solution can
be gained by the closed form expression or in one step with the algorithm,
because the last five rows determine the values for the state quantities.
The values for the five quantities unequal zero are QS

1,32 = 1, QS
1,46 = 11,

QS
1,52 = 6, QS

1,54 = 9, and QS
1,57 = 3 for core 1. As we can see here, a

prioritising of the states is not necessary when the closed form expression
can be used.

The same applies to core 2 and 3. After reducing the system of equations
by rows with a zero value on the right hand side the resulting system of
equations for core 2 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 1 1 0 1
0 0 0 0 1
0 0 0 1 1
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
QS

2,1

QS
2,6

QS
2,10

QS
2,58

QS
2,60

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X2,A

X2,B

X2,C

X2,D

X2,E

X2,F

X2,G

X2,H

Y2,1

Y2,6

Y2,10

Y2,49

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

216
215
215
215
125
123
215
215
1
1
1
92

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.164)
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Table 4.24 State priorities for the three cores

state s: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

priority: 1 2 2 2 2 2 3 3 3 3 4 3 3 3 3 3 3 6 5 5

state s: 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

priority: 5 5 5 5 6 5 5 6 5 5 5 5 8 7 7 8 7 7 7 7

state s: 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

priority: 8 7 7 7 7 7 10 9 9 9 9 9 9 9 10 11 11 11 11 12

The rank of the matrix is five and the closed form expression or the algo-
rithm delivers the solution in one step with QS

2,1 = 1, QS
2,6 = 1, QS

2,10 = 1,

QS
2,58 = 92, and QS

2,60 = 123. The last is core 3. The reduced system of
equations is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
1 1
1 1
0 1
0 1
1 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
QS

3,15

QS
3,56

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X3,A

X3,B

X3,C

X3,D

X3,E

X3,F

Y3,14

Y3,47

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

30
30
31
31
30
30
1
30

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.165)

The rank of the matrix is two and the closed form expression or the algo-
rithm delivers the solution in one step with QS

3,15 = 1 and QS
3,56 = 30.

Even though the solution can be gained using the closed form expression,
the algorithm is once applied to illustrate the solution finding for core 2.
The determination of priorities is not necessary here, but for completeness
they are determined for the states and listed in Table 4.24. The priorities for
the states 1, 6, 10, 58, and 60 are one, two, three, 11, and 12, respectively.
After the reduction of the rows with Rj = 0 and the corresponding state
columns the next loop of the algorithm according to Fig. 4.15 follows. We
find five rows with a row sum equalling one. These are row six, nine, ten, 11,
and 12, i.e., J̃ = {6, 9, 10, 11, 12}, (belonging to X2,F, Y2,1, Y2,6, Y2,10, Y2,58,

and Y2,60). The corresponding state quantities (S̃ = {1, 6, 10, 58, 60}) are
set to QS

2,1 = 1, QS
2,6 = 1, QS

2,10 = 1, QS
2,58 = 92, and QS

2,60 = 123. The right

hand side is updated and the rows J̃ as well as the columns one through
five are eliminated. Hence, a system with no columns remains, i.e., S̃ = ∅
and the algorithm terminates. With this the information which states and
how often these states are necessary for a particular core is gained. Now, in
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Table 4.25 Listing of incoming units of core 1

item item item

unit A B C D E F G H unit A B C D E F G H unit A B C D E F G H

1 ◦ ◦ • ◦ • • • • 11 ◦ • ◦ ◦ • • • ◦ 21 ◦ • • ◦ • • • •
2 ◦ • ◦ • • • • • 12 • • • • • • • • 22 • ◦ ◦ ◦ • ◦ • •
3 ◦ ◦ ◦ ◦ • • • • 13 ◦ • ◦ • • • • • 23 ◦ ◦ ◦ ◦ • • • •
4 • • ◦ • • • • • 14 • ◦ • ◦ • • • • 24 • ◦ • • • • • •
5 ◦ ◦ • ◦ • • • • 15 ◦ • ◦ ◦ • • • • 25 ◦ • • ◦ • • • •
6 • • ◦ ◦ • • • • 16 • ◦ ◦ × • • • • 26 ◦ ◦ ◦ ◦ ◦ ◦ • ◦
7 ◦ ◦ ◦ • • • • • 17 ◦ ◦ • • • • • • 27 ◦ ◦ ◦ ◦ • • • •
8 ◦ • ◦ ◦ • • • • 18 • • ◦ ◦ • • • • 28 • • • ◦ • • • •
9 ◦ • • • • • • • 19 • ◦ • ◦ • • • • 29 • ◦ ◦ • • • • •
10 • ◦ ◦ ◦ • • • ◦ 20 • ◦ ◦ ◦ • • • • 30 • ◦ ◦ • • • • •

The symbols •, ◦, and × denote the condition of an item that allows distribution, recy-
cling, and disposal, recycling and disposal, as well as disposal only, respectively.

a further step, we need to specify which state an incoming core is going to
be assigned to.

4.4.2 Assigning cores to selected states and
recommended usage

4.4.2.1 Successive assignment

In the sequel we assume that the cores are first tested to determine their
condition. Based on the tested condition the core is assigned to a particular
disassembly state and accordingly disassembled. Then the next core is tested
and assigned, etc. Thus, not the complete planned quantity of cores (e.g.,
all 30 units of core 1) is first tested (in a batch) and then assigned to the
relevant states. The assignment is carried out step by step, i.e., unit by unit,
for each type of core.

To illustrate the considerations a possible listing of incoming cores is dis-
played in Table 4.25. The optimal quantity of core 1 is 30 units. Among
these 30 units certain fractions of conditions are expected. The first ran-
domly chosen unit of core 1 that is tested contains items C, E, F, G, and
H in a genuine and functioning condition, such that they can be used for
distribution, recycling, or disposal. The other three items, i.e., A, B, and
D, are either genuine and defective or non-genuine with the right material.
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Table 4.26 Expected item and module usage quantities

separate quantities

item i module m

usage A B C D E F G H 28 39 44 46 48

× disposal 0 0 0.4 0.4 0 0 0 0 0 0 0 0 0
◦ disposal & recycling 16.5 16.5 17.21 17.21 0.3 1.5 0.3 1.5 24.34 24.29 17.30 17.30 1.78

• disposal & recycling
& distribution

13.5 13.5 12.75 12.75 29.7 28.5 29.7 28.5 5.66 5.71 12.70 12.70 28.22

cumulative quantities

disposal 30 30 30 30 30 30 30 30 30 30 30 30 30
disposal & recycling 30 30 29.96 29.96 30 30 30 30 30 30 30 30 30
disposal & recycling
& distribution

13.5 13.5 12.75 12.75 29.7 28.5 29.7 28.5 5.66 5.71 12.70 12.70 28.22

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary.

Therefore, they cannot be used for distribution but only for recycling or dis-
posal. The third condition is an item being non-genuine and of the wrong
material. Such items have to be disposed of, e.g., item D of the 16th unit.

The optimal quantity of cores is 30 units (see Table 4.17). Given this
quantity and the usage probabilities (see Table 4.16) for core 1 the quantities
presented in Table 4.26 are expected. Note that only the relevant modules,
which can be gained by the disassembly states, need to be considered. In
the upper half of the table the quantities represent the actual usage that
corresponds to the core condition listed in Table 4.25. The values are gained
by multiplying the usage probability with the core quantity, e.g., 0.45 ·30 =
13.5 for item A usable for distribution. For modules all containing items
have to be usable for distribution. Otherwise, the module cannot be used for
distribution. Module 44 consists of the items B, F, and G. With a probability
of 0.45 · 0.95 · 0.99 = 0.4232 one unit of core 1 can be used for distribution
(see Table 4.16). This makes 0.4232 · 30 = 12.70 units of the 30 units. As
soon as an item that can only be used for disposal appears in a module,
the module has to be disposed of. The item disposal probability for the
three items in module 44 is zero. Hence the probability for the module is
1− (1− 0)(1− 0)(1− 0) = 0. The missing probability for recycling usage is
the difference between the distribution and disposal usage and 100%, i.e.,
1− 0.4232− 0 = 0.5768 and in absolute terms 30− 12.70− 0 = 17.30 units.

The lower half contains the quantities cumulated from bottom to top,
because in the end all items and modules regardless of their condition can
be used for disposal. In addition, all items that can be used for recycling can
also be used for disposal but not for distribution. Counting the realisation of
Table 4.25, we find for example 14 and 16 times item A being of distribution
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Table 4.27 Realised item and module usage quantities

separate quantities

item i module m

usage A B C D E F G H 28 39 44 46 48

× disposal 0 0 0 1 0 0 0 0 0 0 0 0 0
◦ disposal & recycling 16 17 19 19 1 2 0 3 25 25 17 17 2

• disposal & recycling
& distribution

14 13 11 10 29 28 30 27 5 5 13 13 28

cumulative quantities

disposal 30 30 30 30 30 30 30 30 30 30 30 30 30
disposal & recycling 30 30 30 29 30 30 30 30 30 30 30 30 30
disposal & recycling
& distribution

14 13 11 10 29 28 30 27 5 5 13 13 28

and recycling condition, respectively. The remaining values can be seen in
Table 4.27. For the modules we find, for example, five units of module 44
among the 30 units with all three items being distributable, i.e., marked
with “•” in Table 4.25.

The necessary states of core 1 of the optimal solution are 32, 46, 52,
54, and 57 with the corresponding quantities one, 11, six, nine, and three,
respectively (see Sect. 4.4.1). When a unit of core 1 is tested the decision
maker has to assign the particular unit to a disassembly state and the re-
sulting modules and items to the corresponding usage, i.e., distribution,
recycling, and disposal. Obviously, the decision depends on the condition
of the unit—but not alone. In addition, the planned quantity in proportion
to the available, i.e., expected, is a further important aspect. For example,
29 units of item E are planned for distribution. This is almost 30 units.
Of course, 29.7 distributable units are expected, but one never knows if
the realisation is 30 or 29 units. Therefore, the decision maker tends to
use each distributable unit of item E for distribution. This proportion of
the planned quantity to the expected we call (relative) scarcity in the se-
quel. Furthermore, when module constituent items allow a distribution of
the module the constituent items can be distributed, too. Assuming that
both the distribution of the module and the consisting items is planned, the
module distribution should be preferred, because it is more likely that the
item distribution can be met with other units of cores where not all module
consisting items have the same condition.

Let us illustrate this with five units of an arbitrary three-item core. The
quantity of two modules ABC and two items each of A, B, and C are
planned. The expected quantities of the module ABC and items A, B, and
C shall be four, each. Eventually, the realisation of the five units is • • •,
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◦ • •, • • ◦, • • •, and • ◦ •. When confronted with the first unit the decision
maker should choose the module usage, because even though four modules
are expected only one more is coming. And if the single items would have
been chosen for the first unit, the planned quantity of two modules ABC
cannot be met.

When making a decision which state to choose the three aspects of

• core condition and corresponding usage,
• scarcity, and
• module or item

influence the choice. For each state, that can be chosen from, a priority value
is determined. These values are compared and the state with the highest
value is selected. The here developed priority value calculation is as follows.

The value is the sum of the priority values for each module and item that
can be gained when applying a particular state. Let us consider state 32.
According to this state, module 28 and the single items C, D, and H are the
result. The first unit is the one listed in Table 4.25 with three recycling and
five distribution items. The item C could be used for distribution, but it is
not planned for distribution. Hence, it can be used for recycling. 29 units
are planned of the 30 available. Thus, the scarcity is relatively high and in
terms of numbers it is σI(C, r) = 29

29.96 , i.e., planned quantity in relation to
the expected quantity (see Table 4.26 lower half). The usage is recycling.
This usage is represented by a certain value (usage weight), e.g., one. If
the usage would be distribution, the usage weight should be higher, e.g.,
five. On the other hand, if the item can only be used for disposal—either
because of the condition or the planned quantities—the usage weight should
be less than that for recycling. Since any item condition satisfies the disposal
usage, the usage weight can be set to zero, because of the fact that an item is
disposable is not relevant for the planning. The three usage weights are given
with: ωU

i = 5, ωU
r = 1, and ωU

d = 0, where i, r, and d denote distribution,
recycling, and disposal, respectively.

In the case that the condition of an item is too bad to be used as planned,
the corresponding priority value πI(i, u) is as low as possible, i.e., −∞, so
that this state is not chosen. The planned quantity qIiu is taken from the op-
timal solution (see Table 4.17: XI, XR, XD). The values are summarised in
Table 4.28. The scarcity value is calculated as explained above. Thereby, not
only the planned quantities of the items are of interest. The planned quan-
tities of all modules, that contain this item (i.e., superordinate elements),
have to be considered, too. The reason is that when only a certain quantity
of distributable items exists, they might have to be split into single items
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Table 4.28 Planned quantities

qIiu qMmu

item i module m

usage u A B C D E F G H 28 39 44 46 48

× disposal 0 0 1 1 0 0 0 30 0 0 0 0 0
◦ disposal & recycling 0 0 29 29 0 0 0 0 1 11 6 9 3

• disposal & recycling
& distribution

9 12 0 0 29 0 0 0 0 0 0 0 0

and items in modules. The function for the scarcity value for an item i and
a determined usage u is given by

σI(i, u) =
qIiu +

∑
m∈{m|δcmi=1} q

M
mu

εIiu
=

1

εIiu

⎛⎝qIiu +
∑

m∈{m|δcmi=1}
qMmu

⎞⎠ .

(4.166)
Thereby, εIiu denotes the expected quantity (see Table 4.26 lower half). The
priority value πI(i, u) is then calculated with

πI(i, u) =

{
σI(i, u)ωU

u if qIiu > 0

−∞ else
. (4.167)

The corresponding priority values for the three items C, D, and H are

πI(C, r) = σI(C, r)ωU
r =

ωU
r

εIC,r

⎛⎝qIC,r +
∑

m∈{m|δcmi=1}
qMm,r

⎞⎠
=

1

29.96

(
29 +

∑
m∈∅

qMm,r

)
=

29

29.96
, (4.168)

πI(D, r) = 29
29.96 , and πI(H, d) = 0, respectively. As we see in Eq. (4.168)

item C does not exist in the modules 28, 39, 44, 46, and 48 why the sum
over the planned quantities of relevant modules qMmu is not applied (i.e.,∑

m∈∅ q
M
m,r).

Analogously, the priority value πM(m,u) for the modules is calculated
using the information of the consisting items and is extended by module
specific information. Firstly, the scarcity information of the consisting items
is the basis for the module priority. This means that the scarcity σI(i, u) for
the usage u the module is going to be assigned to is applied to all consisting
items i. The information which item is a consisting one is given by δcmi.
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On top of this, the modules can be even scarcer than the consisting items.
Therefore, the scarcity is increased by the module scarcity. The module
scarcity is a value in the interval of 0 and 1. This value can be added or
multiplied with one plus this value in order to achieve a preference for the
scarce modules. The latter approach, i.e., the multiplication, is chosen in
this approach. The usage weight is multiplied with the so far determined
value.

Finally, a module preference weight ωM is appended to be able to favour
the choosing of modules compared to items even more. Thereby, the scarcity
of a module σM(m,u) is the proportion of the planned quantity qMmu of this
module and all superordinate modules to the expected quantity εMmu. A
module m̃ is superordinate to a module m if it contains at least all the
items module m consists of, i.e., δcm̃i ≥ δcmi with m̃ �= m. The scarcity
value calculation can then be formulated with

σM(m,u) =
1

εMmu

⎛⎝qMmu +
∑

m̃∈{m̃|δcm̃i≥δcmi, m̃ �=m}
qMm̃u

⎞⎠
=

1

εMmu

∑
m̃∈{m̃|δcm̃i≥δcmi}

qMm̃u . (4.169)

Here, the planned quantity of module m as well as the one of the super-
ordinate modules is included why the indices of the sum can be combined.
Given all the necessary data and functions the priority value of a module
m for a given usage u can be determined.

πM(m,u) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ ∑

i∈{i|δcmi=1}
σI(i, u)

⎞⎠(
1 + σM(m,u)

)
ωU
u ωM if qMmu > 0

−∞ else

(4.170)
For module m = 28 (of core 1) there exists no superordinate module with a
planned quantity greater than zero. Hence, the scarcity value for recycling
is

σM(28, r) =
1

εM28,r

∑
m̃∈{m̃|δ1,m̃,i≥δ1,28,i}

qMm̃,r =
1

30

∑
m̃∈{28}

qMm̃,r =
1

30
qM28,r =

1

30
.

(4.171)
The scarcity values of the consisting items A, B, E, F, and G for recycling
are 21/30, 18/30, 1/30, 30/30, and 30/30, respectively. The resulting priority value
with a module preference weight equalling one is
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πM(28, r) =

⎛⎝ ∑
i∈{i|δ1,28,i=1}

σI(i, r)

⎞⎠(
1 + σM(28, r)

)
ωU
r ωM

=
(
σI(A, r) + σI(B, r) + σI(E, r) + σI(F, r) + σI(G, r)

)
· (1 + σM(28, r)

)
ωU
r ωM

=

(
7

10
+

3

5
+

1

30
+ 1 + 1

)(
1 +

1

30

)
1 · 1 =

31

9
. (4.172)

The overall priority value πS(s) of the state s = 32 is the sum of all item
and module priority values, i.e., πS(32) = πI(C, r) + πI(D, r) + πI(H, d) +
πM(28, r) = 29

29.96 + 29
29.96 + 0 + 31

9 ≈ 5.38. Accordingly, the priority values
for the states 46, 52, 54, and 57 are determined. These result in 11.33, −∞,
−∞, and −∞, respectively. The values for the states 52, 54, and 57 are
minus infinity, because according to the state definition the single items A
and/or B are gained. These items are planned for distribution only and in
the first unit of the incoming core their condition is only valid for recycling.
Thus, when applying these states the items could not be used as planned,
which delivers this particular priority value.

The state with the maximum priority value is chosen. This is state s = 46.
Disassembling the unit accordingly, gives the module m = 39 in recycling
quality, the items C, E, and H, in distribution quality, and item D in recy-
cling quality. Nevertheless, only item E is planned for distribution so that
only this item is distributed. Item H is disposed of and all other items
are recycled. Before the next unit can be assigned to a disassembly state,
the quantities used for assigning have to be updated. This means the state
quantities (qSs ), the expected quantities (εMmu and εIiu) as well as the planned
quantities (qMmu and qIiu) are affected. The state quantities were determined
in the section above, e.g., qS46 = QS

1,46 for core 1.

Before the assignment, the state quantity for state s = 46 is qS46 = 11.
After the assignment, it is reduced by one, i.e., qS46 = 10 for the next as-
signment. The other state quantities stay unchanged. Next, the planned
quantities qMmu and qIiu are discussed. With state 46 the module 39 and the
items C, D, E, and H are gained. These are used for recycling with the ex-
ception of item E and H. These two are used for distribution and disposal,
respectively. For the distributed items a further step has to be included: the
damaging. If an item is damaged during the disassembly process, it cannot
be used for distribution anymore. It is then used for recycling or disposal,
whatever options exist for this particular item. This has also to be consid-
ered in the quantity updating. In the case that an item is used for recycling
instead of the assigned distribution the quantity qIi,r is reduced by one in-
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Table 4.29 Updated quantities

planned quantities

qIiu qMmu

item i module m

usage u A B C D E F G H 28 39 44 46 48

× disposal 0 0 1 1 0 0 0 29 0 0 0 0 0
◦ disposal & recycling 0 0 28 28 0 0 0 0 1 10 6 9 3

• disposal & recycling
& distribution

9 12 0 0 28 0 0 0 0 0 0 0 0

expected (cumulated) quantities

εIiu εMmu

disposal 29 29 29 29 29 29 29 29 29 29 29 29 29
disposal & recycling 29 29 28.96 28.96 29 29 29 29 29 29 29 29 29
disposal & recycling
& distribution

13.5 13.5 11.75 12.75 28.7 27.5 28.7 27.5 5.66 5.71 12.70 12.70 27.22

stead of qIi,i. Since item E does not get damaged during the disassembly
process (i.e., θ1,E = 0) it is used for distribution. Hence, the correspond-
ing values of Table 4.28 are reduced by one. The resulting quantities are
depicted in Table 4.29.

Lastly, the expected quantities need to be updated, too. Thereby, only
the cumulative expected quantities are of interest. For this updating the
usage of the modules and/or items does not matter. Only the condition of
the unit causes the corresponding updating. If an item or module could be
used for distribution, all three quantities, i.e., for distribution, recycling,
and disposal, are reduced by one. This applies to the items C, E, F, G, and
H as well as module 48. For items and modules which could not be used for
distribution but for recycling and disposal, the two quantities for recycling
and disposal are reduced by one. For the remaining items A, B, and D as
well as the modules 28, 39, 44, and 46 this is also necessary. Lastly, for
items and modules only usable for disposal only the latter quantity has to
be reduced by one unit. This is not the case for the first unit, but for the
16th unit it is. The resulting quantities are depicted in Table 4.29.

The information gained with the developed algorithm for the decision
maker is summarised in Table 4.30. The state priorities are for illustration.
The selected state as well as the usage information are relevant. The items
F and G are not listed in the table, because they always appear in modules
and never as a single item. For exemplary orders of incoming units of core
2 and 3 the assignment information is listed in appendix C.8.

The structure of the above developed algorithm is depicted in Fig. 4.16.
It starts with initialising the required quantities and weights. Once this is
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Table 4.30 State assignment for core 1

state priority πS(s)
selected
state
s

item usage u module usage u

s i m

unit 32 46 52 54 57 A B C D E H 28 39 44 46 48

1 5.38 11.33 −∞ −∞ −∞ 46 r r i d r
2 5.36 11.22 −∞ 14.78 −∞ 54 i r r i d r
3 5.37 11.26 −∞ −∞ −∞ 46 r r i d r
4 5.35 11.14 13.30 14.65 16.75 57 i i r r i d r
5 5.40 11.24 −∞ −∞ −∞ 46 r r i d r
6 5.38 11.11 13.21 14.67 16.49 57 i i r r i d r
7 5.44 11.22 −∞ −∞ −∞ 46 r r i d r
8 5.41 11.07 −∞ 14.68 −∞ 54 i r r i d r
9 5.43 11.13 −∞ 14.50 −∞ 54 i r r i d r
10 5.45 11.18 13.21 −∞ −∞ 52 i r r i d r
11 5.47 11.25 −∞ 14.35 −∞ 54 i r r i d r
12 5.50 11.32 12.96 14.10 15.67 57 i i r r i d r
13 5.59 11.48 −∞ 14.02 −∞ 54 i r r i d r
14 5.62 11.58 12.89 −∞ −∞ 52 i r r i d r
15 5.67 11.69 −∞ 13.73 −∞ 54 i r r i d r
16 4.78 10.88 11.60 −∞ −∞ 52 i r d i d r
17 5.77 11.97 −∞ −∞ −∞ 46 r r i d r
18 5.75 11.75 11.99 13.32 −∞ 54 i r r i d r
19 5.82 11.92 12.40 −∞ −∞ 52 i r r i d r
20 5.90 12.13 11.65 −∞ −∞ 46 r r i d r
21 5.89 11.86 −∞ 12.67 −∞ 54 i r r i d r
22 5.99 12.10 12.15 −∞ −∞ 52 i r r i d r
23 6.13 12.41 −∞ −∞ −∞ 46 r r i d r
24 6.15 12.06 10.91 −∞ −∞ 46 r r i d r
25 6.17 11.59 −∞ 11.39 −∞ 46 r r i d r
26 6.21 −∞ −∞ −∞ −∞ 32 r r d r
27 −∞ 11.07 −∞ −∞ −∞ 46 r r i d r
28 −∞ 9.93 11.04 12.38 −∞ 54 i r r i d r
29 −∞ 10.14 12.73 −∞ −∞ 52 i r r i d r
30 −∞ 11.45 −∞ −∞ −∞ 46 d r i d r

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.

done, the first incoming unit of the core in focus is tested to find out about
its condition. With this information the priority values of all relevant states
are determined. The state with the highest priority value is selected and as
output, the selected state as well as the information, which item and module
is to be assigned to what kind of usage, is given to the person or persons who
do the disassembling. During the disassembly an item might be damaged.
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Start

Initialise:
- Expected quantities (εIiu, ε

M
mu)

- Planned quantities (qIiu, q
M
mu)

- State quantities (qSs )
- Usage weights (ωU

i , ω
U
r , ω

U
d )

- Modul preference weight (ωM)

Test next incoming core

For each relevant state s:
Determine priority value (πS(s)) using the scarcity value (σI(i, u), σM(m,u))
and the priority values for items and modules (πI(i, u), πM(m,u))

Select state s̃ with highest priority value

Output:
- Selected state s̃
- Usage for resulting moduls and items

Input:
- Damaged items (i.e., usage changes from distribution (i) to
recycling (r) or disposal (d))

Update:
- State quantity (qSs̃ )
- Planned quantities (qIiu, q

M
mu)

- Expected quantities (εIiu, ε
M
mu)

Further units?

no

yes

End

Fig. 4.16 Flowchart of state and usage assignment algorithm

If this happens to an item that should be distributed, it can only be used
for recycling or disposal afterwards. The information of the damaging is
passed to the decision maker, who assigns this particular item to a new
usage. This is either recycling (r) or disposal (d), depending on the planned
quantities. This information is again given to the disassembling person. The
state quantity, planned quantities, and expected quantities are updated and,



262 4 Flexible disassembly planning

if further units of this core come in, they are tested and assigned. Once, all
units are disassembled the assignment ends.

The applied weights for the usage ωU
u as well as the module preference

ωM must be adjusted by the decision maker. For our numerical example
the above given weights work well. For example, a usage weight of ωU

i = 2
results for some orders of incoming units of cores in infeasible assignments.
To find adequate weight values a test set of several (e.g., 100) orders of
units per core can be generated. Note that the incoming units of cores in
the simulation should follow the expected quantities of items and modules.

4.4.2.2 Batch assignment

The above presented procedure for a step by step assignment can be utilised
for batch testing without modification. Nevertheless, if all incoming units
are first tested and in a next step assigned with the information of all units, a
truly deterministic approach can be applied. One such approach is presented
in the sequel. It is based on linear programming. The decision variables are
the ones representing the state selection Uns per unit n and relevant state
s, the item usage Xniu of item i, and the module usage Ynmu of the relevant
module m. The term relevant emphasises that only the states and modules
are considered that appear in the optimal solution. All unused states and
modules are neglected. All decision variables are binary variables. The state
quantities qSs , the condition of the items in a unit after testing tni, the item
state relation γI

is, the modules state relation γM
ms, the module definition

δmi, and the planned quantities of items qIiu and modules qMmu are given.
The core index c is neglected for γI

is, γ
M
ms, and δmi, because this assigning

is conducted for each core separately.
The sum over all units of the state selection variable has to equal the

state quantities. ∑
n

Uns = qSs ∀ s (4.173)

In addition, only one state selection variable can be chosen for a unit n.∑
s

Uns ≤ 1 ∀ n (4.174)

Depending on the selected state the corresponding decision variables repre-
senting the item and module usage assignment have to be greater than zero.
Of course, per item and module only one of the usage assignments must be
one.
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u

Xniu ≥ Uns ∀ n, s, i ∈ {i|γI
is = 1} (4.175)∑

u

Xniu ≤ 1 ∀ n, i (4.176)∑
u

Ynmu ≥ Uns ∀ n, s,m ∈ {m|γM
ms = 1} (4.177)∑

u

Ynmu ≤ 1 ∀ n,m (4.178)

Furthermore, the assigned usage is limited by the unit condition. For items
each item is to be considered separately. However, for modules the lowest
condition of the items the module consists of determines the upper limit of
the module usage. Thereby, the values 1, 2, and 3 represent the disposal,
recycling, and distribution, respectively. This applies to tni and u.∑

u

uXniu ≤ tni ∀ n, i (4.179)∑
u

uYnmu ≤ min
i∈{i|δmi=1}

{tni} ∀ n,m (4.180)

Besides this, with each item and module assignment for a particular usage
the planned quantities have to be met.∑

n

Xniu = qIiu ∀ i, u (4.181)∑
n

Ynmu = qMmu ∀ m,u (4.182)

Lastly, the domain of the decision variables is limited to the values zero and
one.

Uns, Xniu, Ynmu ∈ {0, 1} ∀ n, s, i,m, u (4.183)

With this (pure) integer LP (ILP) a feasible assignment of the units to
states and the usage of the resulting items and modules is gained. One of the
existing 10,920 feasible solutions48 is listed in Table 4.31 for core 1 and the
same unit order as Table 4.25. (Solutions with this model for the other two
cores can be found in appendix C.9.) The benefit of having all units tested in
a batch and assigned to the states is that the units can be disassembled in an
order that minimises the state changes. Hence, the person who disassembles

48 The number of solutions is determined by successive adding of a constraint, which
makes the last solution infeasible.
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Table 4.31 State assignment for core 1 (LP)

selected
state
s

item usage u module usage u

i m

unit A B C D E H 28 39 44 46 48

1 46 r r i d r
2 54 i r r i d r
3 46 r r i d r
4 57 i i r r i d r
5 46 r r i d r
6 54 i r r i d r
7 46 r r i d r
8 54 i r r i d r
9 54 i r r i d r
10 52 i r r i d r
11 46 r r i d r
12 54 i r r i d r
13 54 i r r i d r
14 52 i r r i d r
15 54 i r r i d r
16 52 i r d i d r
17 46 r r i d r
18 57 i i r r i d r
19 46 r r i d r
20 46 r r i d r
21 54 i r r i d r
22 46 d r i d r
23 46 r r i d r
24 52 i r r i d r
25 54 i r r i d r
26 32 r r d r
27 46 r r i d r
28 57 i i r r i d r
29 52 i r r i d r
30 52 i r r i d r

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.

does not have to change the state for each single unit in the worst case. But,
still some uncertainty remains, because the damaging occurs during the
disassembly and cannot be predicted. Therefore, the order of disassembling
should be in a way that considers the damaging. For example, the units,
where items to distribute are gained and damaging might occur, should be
disassembled first. This way, there will be further units coming, which can
be used to assign a functioning item to the distribution. In the reverse order



4.5 Discussion of alternative solution methods 265

it might happen that there are no more units to meet the planned quantities
of items to distribute. Even with this approach no feasible solution might be
found, if the conditions are not as expected. In addition, even with a feasible
solution, the planned quantities cannot be met when damaging occurs more
often than expected. This uncertainty is always present.

4.5 Discussion of alternative solution methods

4.5.1 Using the continuous solution

Following the above discussion of the optimal flexible disassembly planning
solution in comparison to more limiting approaches, we find that the prob-
lem and thus the model is rather complex. This is mainly reflected in the
model size and lastly in the solution time when solving the model. Even for
such a small numerical example, the required time exceeds 4,000 seconds
on a computer with two AMD Opteron 6282SE 2.6GHz and eight threads
used for GUROBI 5.0 solver. Even though, this is a clear motivation for
applying a heuristic—be it a special one or a meta-heuristic—it is not the
focus in the sequel. Instead, with the use of the presented model and some
slight modifications of it, some ideas to speed up the solving with the draw-
back of gaining only suboptimal solutions are discussed in the following.
The drawback of suboptimal solutions is a bit softened, because of the un-
certainty that exists with regard to the condition realisation of the acquired
cores. Thus, the decision maker might also be satisfied with a near optimal
solution.

A first aspect is the continuous solution of the model. This means, all
variables are real valued, i.e., the domain of the variables XI

ci, X
A
ci, X

R
cir,

XD
cid, Y

M
cm, Y R

cmr, and Y D
cmd is changed from Z to R. (This is also called

the relaxed solution.) The non-negativity of the variables stays unchanged.
Hence, the model changes from a MILP to a LP, which is generally solved
much faster. The optimal continuous solution listed in Table 4.32 is gained
in 29 seconds. Compared to the solution time of the MILP (4,046 s) this is
almost 140 times faster. The resulting objective is 33,216.17e.49 Of course,
this solution is infeasible, because integer values for particular decision vari-
ables are required. One could argument, that with large quantities the error
of rounding the values is negligible. This is probably true for values that are
very close to an integer value (e.g., XR

2,A,1 = 85.07), but when the solution

49 The optimal objective of the MILP is 30,739e.
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Table 4.32 Optimal continuous solution of the flexible planning

variables representing the interfaces

QC
1 30 QI

1 249.68 QM
1 30 QR

1 35,635 QR
4 0

QC
2 216.80 QI

2 154.34 QM
2 90 QR

2 69,965.03 QD
1 1.45

QC
3 30.61 QI

3 214.94 QR
3 0 QD

2 6,000

item and module flow variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2
c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13.50 97.56 13.77 . 85.07 16.67 . 32.98 . . . . . . .
B 13.50 97.56 13.77 . 118.05 16.67 . . . . . . . . .
C . . . 29.96 214.64 30.26 . . . 0.04 . 0.05 . . .
D . . . 29.96 214.64 30.26 . . . 0.04 . 0.05 . . .
E 29.70 124.64 . . . 30 . . . . . . . . .
F . . . . 122.49 30 . . . . . . . . .
G . 214.64 0.30 . . . . . . . . . . . .
H . . . . . . . 214.64 0.30 . . . 30 . .

Y M
cm Y R

cmr

r = 1 r = 2
c c c

m 1 2 3 1 2 3 1 2 3

1 (ABCDEFGH) . . . . . . . 0.00 0.09
2 (BCDEFGH) . . . . . . . 0.01 0.07
3 (ACDEFGH) . . . . . . . 0.01 0.07
6 (ABCDFGH) . . . . . . . 0.65 .
7 (CDEFGH) . . . . . . . 0.00 0.06
8 (BDEFGH) . . . . . . . . 0.00
9 (BCEFGH) . . . . . . . . 0.00
10 (BCDFGH) . . . . . . . 0.53 .
11 (ADEFGH) . . . . . . . . 0.00
12 (ACEFGH) . . . . . . . . 0.00
13 (ACDFGH) . . . . . . . 0.53 .
17 (DEFGH) . . . . . . . . 0.00
18 (CEFGH) . . . . . . . . 0.00
19 (CDFGH) . . . . . . . 0.43 .
28 (ABEFG) . . . . . . 0.09 . .
34 (BEFG) . . . . . . 0.07 . .
36 (AEFG) . . . . . . 0.07 . .
39 (ABFG) . . . . . . 8.98 . .
41 (EFG) . . . . . . 0.06 . .
44 (BFG) . . . . . . 7.35 . .
46 (AFG) . . . . . . 7.35 . .
47 (GH) . . 30 . . . . . .
48 (FG) . . . . . . 6.01 . .
49 (EF) . 90 . . 2.15 0.30 . . .

Values are rounded to two digits. Values with less than two post decimal digits indicate
an exact value without rounding being necessary. Dots denote a value of zero and 0.00
indicates a value of less than 0.005. All non-listed values are zero.
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contains many values close to 0.5, i.e., in between two integer values, the
question arises which integer value to round it to and trying to maintain
feasibility. If it was just for one limitation (e.g., the purity) it might be fairly
easy to find a decision rule, but with many contrary limitations this is diffi-
cult. To decide whether the value QC

2 = 216.80 is rounded down or up one
has to consider that when rounding down the purity and/or lower distribu-
tion limitations make the solution infeasible. On the other hand, rounding
up might lead to an infeasible workload with regard to the limited labour
time. In addition, for a few variables the problem might be manageable, but
for a large number of affected variables the little infeasibilities add up.

Rounding the continuous solution to the nearest integer value results
in the values listed in Table 4.33. Thereby, only the variables XI

ci, X
R
cir,

XD
cid, Y

M
cm, Y R

cmr, and Y D
cmd are rounded, because they represent the item

flow and are the basis for the quantities coming in and going out of the
disassembly process. They also determine the resulting profit. But when
rounding these variables the first problem that arises is which value to choose
for the acquired quantity QC

c , because the sum of the items and modules
does not add up to the same quantity of items used in the disassembly
process. For example, the rounded values for core 3 differing zero are XI

3,A =

XI
3,B = 14, XR

3,A,1 = XR
3,B,1 = 17, XR

3,C,1 = XR
3,D,1 = XR

3,E,1 = XR
3,F,1 = 30,

and Y M
3,47 = 30. Adding these, results in 31 units for items A and B and 30

for the remaining. What is the correct value for the quantity of cores then?
For simplicity we take the maximum value, i.e., 30, 218, and 31 units for

QC
1 , Q

C
2 , and QC

3 , respectively. The differing items are disposed of. This way
no item is lost, but the purity, workload, etc. limitations are still not con-
sidered. Using the values of the integer variables in Table 4.33, the values of
the interfacing variables are calculated. The resulting workload is 2,212.75 h,
which exceeds the limit of 2,200 h, and the profit 27,793.5e. Thereby, the
extra disposal of the 2,582 kg causes only 516.4e disposal cost. The main
driver comes from the increased quantity of acquired cores. The increase
from 30, 216.80, and 30.61 to 30, 218, and 31 units for core 1, 2, and 3,
respectively, leads to an increase of core acquisition cost of 4,251e and of
estimated disassembly cost of 437.4e, assuming complete disassembly for
the extra units. Note that most likely, the solution is still infeasible (e.g.,
because of the workload).

Another possibility of using the continuous solution to gain a solution
with integral values is the following. Again, there exists no guaranteed inte-
gral solution with the following procedure, but the larger the quantities and
the less restrict the constraints the more likely is a feasible solution. Based
on the continuous solution each core is considered separately, which reduces
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Table 4.33 Rounded integer solution of the flexible planning

variables representing the interfaces

QC
1 30 QI

1 252 QM
1 30 QR

1 35,457 QR
4 0

QC
2 218 QI

2 155 QM
2 90 QR

2 69,511 QD
1 2,582

QC
3 31 QI

3 215 QR
3 0 QD

2 6,000

item and module flow variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2

c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 98 14 . 85 17 . 33 . . . . . . .

B 13 98 14 . 118 17 . . . . . . . . .

C . . . 30 215 30 . . . . . 1 . . .

D . . . 30 215 30 . . . . . 1 . . .

E 30 125 . . . 30 . . . . 1 1 . . .

F . . . . 122 30 . . . 1 1 1 . . .

G . 215 . . . . . . . 1 . 1 . . .

H . . . . . . . 215 . . . 1 30 . .

Y M
cm Y R

cmr

r = 1 r = 2

c c c

m 1 2 3 1 2 3 1 2 3

6 (ABCDFGH) . . . . . . . 1 .

10 (BCDFGH) . . . . . . . 1 .

13 (ACDFGH) . . . . . . . 1 .

39 (ABFG) . . . . . . 9 . .

44 (BFG) . . . . . . 7 . .

46 (AFG) . . . . . . 7 . .

47 (GH) . . 30 . . . . . .

48 (FG) . . . . . . 6 . .

49 (EF) . 90 . . 2 . . . .

A dot denotes a value of zero.

the complexity of the model a little bit. To avoid infeasibilities because of
considering the cores separately, the values with direct influence on the vari-
ables of other cores are treated specially. For example, the quantity of items
to distribute (e.g., demand position e = 1) is the sum of the decision vari-
ables of several cores (see Eq. (4.85)). In our numerical example the items
A and B of all cores determine the quantity QI

1. All six variables adding up
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to QI
1 are no integer values (see Table 4.32). The quantity QI

1 is limited and
goes into the objective function. When optimising the model just for one
core, the contribution of the other cores to the core overlapping quantities is
included in the optimisation. Solving the model for core 1 means that XI

1,A

and XI
1,B are decision variables. The calculation of the distribution quantity

is modified to

QI
1 = XI

1,A +XI
1,B +XI

2,A +XI
2,B +XI

3,A +XI
3,B

QI
1 = XI

1,A +XI
1,B + 97.56 + 97.56 + 13.77 + 13.77 = XI

1,A +XI
1,B+222.66.

(4.184)

Thus, the quantity limitations do not have to be changed. Just an adding
of a fixed term and the removing of all variables of unfocussed cores are
necessary. This results in removing sums over c and ∀ quantifiers regarding
c. The core in focus is denoted with c̃. The objective function is to be
maximised and modified to

Maximise P = R− C (4.185)

R =
∑
e

rIeQ
I
e +

∑
f

rMf QM
f +

∑
r

rRr Q
R
r (4.186)

C =
(
cAc̃ + cJc̃,1

)
QC

c̃ −
M c̃∑
m=1

cJc̃m

(
Y M
c̃m +

∑
r

Y R
c̃mr +

∑
d

Y D
c̃md

)
+
∑
d

cDd Q
D
d .

(4.187)
The values of the unfocussed values in the objective function are not neces-
sary, because they are fixed and thus not relevant for decision making. The
objective value is therefore different to the one for the model covering all
three cores. The item flow constraints are changed to:

QC
c̃ = XI

c̃i +
∑
r

XR
c̃ir +

∑
d

XD
c̃id +

M c̃∑
m=1

δc̃mi

(
Y M
c̃m +

∑
r

Y R
c̃mr +

∑
d

Y D
c̃md

)
∀ i ∈ {1, . . . , Īc̃}, (4.188)
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QR
r =

Īc̃∑
i=1

wc̃i

⎛⎝XR
c̃ir +

M c̃∑
m=1

δc̃miY
R
c̃mr

⎞⎠
+

⎡⎣∑
c�=c̃

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠⎤⎦ ∀ r , (4.189)

QD
d =

Īc̃∑
i=1

wc̃i

⎛⎝XD
c̃id +

M c̃∑
m=1

δc̃miY
D
c̃md

⎞⎠
+

⎡⎣∑
c�=c̃

Īc∑
i=1

wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠⎤⎦ ∀ d , (4.190)

XI
c̃i +

∑
r

XR
c̃ir +

∑
d

XD
c̃id ≥

M c̃∑
m=1

αc̃mi

(
Y M
c̃m +

∑
r

Y R
c̃mr +

∑
d

Y D
c̃md

)
∀ i ∈ {1, . . . , Īc̃}, (4.191)

QI
e =

∑
(c,i)∈Pe

c=c̃

XI
ci +

⎡⎢⎢⎣ ∑
(c,i)∈Pe

c�=c̃

XI
ci

⎤⎥⎥⎦ ∀ e , (4.192)

XI
c̃i = 0 ∀ (c̃, i) /∈

⋃
e

Pe , (4.193)

QM
f =

∑
(c,m)∈Rf

c=c̃

Y M
cm +

⎡⎢⎢⎣ ∑
(c,m)∈Rf

c=c̃

Y M
cm

⎤⎥⎥⎦ ∀ f , (4.194)

and

Y M
c̃m = 0 ∀ (c̃,m) /∈

⋃
f

Rf . (4.195)

Thereby, the term in the squared brackets is the fixed term and c �= c̃
denotes all indices of c with the exception of c̃. The condition constraints
including the damaging are not displayed here, because they are formulated
for each core individually already (see Eqs. (4.91)–(4.107)). Only the index c
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is substituted by c̃. The purity constraints need to be modified again. The
left hand side can stay unchanged, because the quantities of the unfocussed
cores are already included in Eq. (4.189). Thus, the beneficial weight of the
unfocussed cores has to be added to the right hand side of the relation.

ωrQ
R
r ≤

Īc̃∑
i=1

πc̃irwc̃i

⎛⎝XR
c̃ir +

M c̃∑
m=1

δc̃miY
R
c̃mr

⎞⎠
+

⎡⎣∑
c�=c̃

Īc∑
i=1

πcirwci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠⎤⎦ ∀ r (4.196)

XR
c̃ir = 0 ∀ (c̃, i) ∈ H, r (4.197)

XD
c̃id = 0 ∀ (c̃, i) ∈ H, d ∈ {1} (4.198)

Y R
cmr = 0

∀ (c,m) ∈ {(c,m)|c = c̃, δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}
}
, r
(4.199)

Y D
cmd = 0

∀ (c,m) ∈ {(c,m)|c = c̃, δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}
}
, d ∈ {1}
(4.200)

Only the limit constraints for the acquired quantities have to be modified.
The others stay as they are.

QC
c̃ ≤ QC

c̃ ≤ QC
c̃ (4.201)

QI
e ≤ QI

e ≤ DI
e ∀ e (4.202)

QM
f ≤ QM

f ≤ DM
f ∀ f (4.203)

QR
r ≤ QR

r ≤ DR
r ∀ r (4.204)

QD
d ≤ QD

d ≤ QD
d ∀ d (4.205)

On the contrary, in the workload and labour time limit constraint the
amount of workload used by the unfocussed cores is added or subtracted
from the limit L̄.
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tJc̃,1Q
C
c̃ −

M c̃∑
m=1

tJc̃m

(
Y M
c̃m +

∑
r

Y R
c̃mr +

∑
d

Y D
c̃md

)
≤

L̄−
⎡⎣∑

c�=c̃

⎛⎝tJc,1Q
C
c −

Mc∑
m=1

tJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)⎞⎠⎤⎦ (4.206)

Lastly, the domain of the variables is changed to integer values only for the
focussed core c̃.

XI
c̃i, X

A
c̃i, X

R
c̃ir, X

D
c̃id, Y

M
c̃m, Y R

c̃mr, Y
D
c̃md ∈ Z

∗

∀ i ∈ {1, . . . , Īc̃},m ∈ {1, . . . ,M c̃}, r, d (4.207)

Focussing on core 1 and solving the above model fixes the integral variables
for core 1. All these fixed variables are then used to replace the continuous
values of the variable of core 1. After this update of variable values the next
core is in focus, i.e., core 2. The integral variable values for core 2 are gained.
Then the integral values substitute the continuous values of core 2 and the
focus is shifted to core 3. The model is solved a third time and the last set
of integral variable values is gained. The objective function variables, i.e.,
R, C, and P , are calculated based on the integral values. The solution is
listed in Table 4.34.

The overall gained solution is feasible regarding all constraints. The ob-
jective results in P = 30,580.1e. This is just a gap of 0.52% compared
to the optimal value of 30,739e. The solution is gained in 662 s. Thereby,
29 s are used for the continuous model. For the three runs of determining
the integral values for the cores 143 s, 115 s, and 375 s are necessary for our
numerical example. This is about six times faster than the 4,046 s for the
optimal solution and the gap is relatively small.50

4.5.2 Fixed solution time

Another rather easy to implement speed up of finding a solution is the
limitation of the solution time. Choosing the right time in advance is not

50 The question is, whether the optimal integral solution for each core is necessary. As
in the dynamic planning, the overall solution with optimal solutions of the subproblems
does not have to be better than the overall solution with suboptimal solutions of the
subproblems. Therefore the so-called MIP gap could be set to a bigger value, e.g., 0.001,
instead of the value used for solving all problems in this work, i.e., 10−7.
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Table 4.34 Core successive integer solution of the flexible planning

variables representing the interfaces

QC
1 30 QI

1 246 QM
1 30 QR

1 35,941 QR
4 0

QC
2 217 QI

2 153 QM
2 90 QR

2 71,317 QD
1 32

QC
3 31 QI

3 214 QR
3 0 QD

2 6,000

item and module flow variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2
c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 97 13 . 93 17 . 25 . . . . . . .
B 13 97 13 1 119 16 . . 1 . . . . . .
C . . . 29 211 30 . 3 . 1 . 1 . . .
D . . . 29 214 30 . . . 1 . 1 . . .
E 29 124 . . . 31 . . . . . . . . .
F . . . . 123 30 . . . . . . . . .
G . 214 . . . . . . . . . . . . .
H . . . . . . . 214 . . . . 30 . .

Y M
cm Y R

cmr

r = 1 r = 2
c c c

m 1 2 3 1 2 3 1 2 3

10 (BCDFGH) . . . . . . . 1 .
26 (ACDGH) . . . . . . . 2 .
27 (ABFGH) . . . . . . . . 1
36 (AEFG) . . . . . . 1 . .
39 (ABFG) . . . . . . 9 . .
44 (BFG) . . . . . . 7 . .
46 (AFG) . . . . . . 7 . .
47 (GH) . . 30 . . . . . .
48 (FG) . . . . . . 6 . .
49 (EF) . 90 . . 3 . . . .

A dot denotes a value of zero.

so easy, because the decision maker has to manage a trade-off between fast
solving and a good solution or even a feasible solution. In general, when
solving a flexible disassembly problem with limiting constraints there exists
no feasible solution from the beginning. A first feasible solution might occur
after seconds, minutes, or hours, depending on the problem, solver software,
and hardware. Thus, when fixing the solution time the condition should
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be added, that the solving process should run as long as a first feasible
solution is found. Note that one feasible solution is known to the decision
maker in short time. This is the solution of the complete disassembly. Thus,
as long as the objective of the suboptimal flexible planning is below the
optimal objective of the complete disassembly planning, the solving should
be continued or the complete disassembly used. Of course, one could use
the optimal solution of the complete disassembly as initial solution.

To illustrate the above the log file of the solving with GUROBI is listed
in Fig. 4.17. We see that the objective of the relaxed problem (i.e., without
integer variables) is 33,216.17e. After 444 s a first feasible solution with an
objective of 10,182.6e is found. After 534 s a solution with an objective of
27,506.15e is found. The time limit set for this solving run is 662 s, because
it equals the time needed to find the solution in the above Sect. 4.5.1. For
this example the solution found with the time limitation is worse than that
of the above presented method. The MIP gap, i.e., the gap between the
actual best feasible solution and the best bound, is 15.67%. The optimality
gap, i.e., the gap between the best feasible solution and the optimum, is
30,739

27,506.15 = 11.75%. Note that the optimality gap can only be determined
when the optimal solution is known.

4.5.3 Reducing the disassembly state graph

Taking a look at the continuous solution (see Table 4.32) we notice that for
core 1 not a single module with item H exists. This is expected, because
the hazardous item H forces each module with this item to be disposed
of at a higher unit cost. Depending on the core this leads to higher cost
compared than separating all other items from the hazardous one. The
exception is a case where a connected item causes less extra cost of disposal
compared to the disassembly. In such a case, the decision maker should
check, whether these two items should be modelled as a single one. When the
continuous solution indicates that the hazardous items are always separate
from anything else or the decision maker is confident that this is going to
be a property of the solution for the actual problem, all decision variables
representing modules that contain a hazardous item are set to zero. For the
numerical example this reduces the number of modules of core 1 from 50
to ten. The remaining modules are m ∈ {28, 34, 36, 39, 41, 44, 46, 48, 49, 50}.
Thereby, all the existing states stay unchanged.

This can also be considered from the beginning, i.e., when building the
disassembly state graph. Thereby, the items C and D have to be taken off
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Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 33216.1650 0 64 - 33216.1650 - - 30s

0 0 32668.6115 0 68 - 32668.6115 - - 71s

0 0 32666.8357 0 64 - 32666.8357 - - 93s

0 0 32666.7376 0 64 - 32666.7376 - - 119s

0 0 32666.7376 0 64 - 32666.7376 - - 132s

0 2 32666.7376 0 64 - 32666.7376 - - 281s

4 5 32419.0317 4 66 - 32529.6314 - 134 285s

15 15 32101.1308 9 63 - 32101.1308 - 161 292s

22 23 31959.4642 11 63 - 32021.3098 - 377 305s

31 29 31817.7976 13 63 - 32002.2862 - 409 311s

55 41 31333.0632 15 63 - 32002.2862 - 499 325s

68 46 31100.8376 16 63 - 32002.2862 - 516 333s

83 48 30903.3544 17 44 - 32002.2862 - 496 336s

98 55 30299.1913 18 54 - 32002.2862 - 441 340s

114 72 29493.9736 20 54 - 32002.2862 - 416 361s

381 234 11618.5706 74 26 - 32002.2862 - 407 374s

498 322 11600.2229 77 18 - 32002.2862 - 451 389s

629 414 11589.7643 80 14 - 32002.2862 - 476 401s

725 489 11565.3000 83 8 - 32002.2862 - 512 413s

859 597 11564.7577 100 8 - 32002.2862 - 508 430s

1043 778 10182.6000 112 4 - 32002.2862 - 482 444s

* 1064 734 131 10182.599994 32002.2862 214% 476 444s

1187 822 cutoff 132 10182.6000 31903.1066 213% 468 479s

1198 821 31090.9070 12 40 10182.6000 31817.6140 212% 472 494s

* 1252 537 163 27005.750000 31817.6140 17.8% 464 494s

1348 571 29482.3411 18 34 27005.7500 31817.6140 17.8% 447 511s

* 1376 296 179 27506.150000 31817.6140 15.7% 447 511s

1479 307 29007.1778 30 39 27506.1500 31817.6140 15.7% 438 534s

1562 345 27508.3500 108 64 27506.1500 31817.6140 15.7% 433 591s

1564 346 30938.2751 9 64 27506.1500 31817.6140 15.7% 432 647s

Cutting planes:

Gomory: 66

Explored 1564 nodes (792259 simplex iterations) in 662.88 seconds

Thread count was 8 (of 32 available processors)

Time limit reached

Best objective 2.750614999990e+04, best bound 3.181760000000e+04, gap 15.6745%

Fig. 4.17 GUROBI log file (excerpt)

prior to item H. This is depicted in the extended connection state graph.
This graph is repeated here (see Fig. 4.18, right), because it still applies to
the cores 2 and 3. The way with the least amounts of items to take off to
separate item H, is taking off item C, D, and H. Therefore, the individual
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Core 1

A

B

C

D
EFGH

Core 2 and 3

A

B

C

D

EFGH

“Both wheels or no wheel”

A
B

C

D
EFGH

Fig. 4.18 Extended connection graph

connections they have are grouped to a single one. When separating this
group connection, the three items are gained as single items.51 This is de-
picted by the rectangle around the items C, D, and H. To avoid that any
module combination exists with item H in it, it has to be assured that no
other item (i.e., A, B, E, F, and G) can be taken off prior to the group of
item C, D, and H. This is achieved by adding precedence information. These
are the three lines from the connection between H and G to the items A, B,
and E. Lines to F and G are unnecessary, because the item B disables the
separation of item F and G. The resulting graph is that of Fig. 4.18, top
left. In addition, we assume that for any reason (e.g., handling) either both
front wheels have to be taken off or none of the two. Thus, the two items
are again grouped and the resulting graph is depicted on the bottom left.52

Based on the connection graph the corresponding disassembly state graph
is the one shown in Fig. 4.19, top. Even though the complete core is not
a feasible module, because of the consisting item H, it has to be included
according to the above approach to calculate the disassembly cost and time.
Compared to the initial disassembly state graph in Fig. 4.4, two levels are

51 The separation of more than one item or module with one separation is also
called ternary operation and appears in practice. Cf. Kwak/Hong/Cho (2009): Eco-
architecture analysis for end-of-life, p. 6247. Thus, a ternary operation in practice would
result in the same representation like the grouped items.
52 If the latter aspect is considered also, the remaining modules reduces to m ∈
{28, 39, 41, 48, 49}.
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(ABCDEFGH)1

C.D.H(ABEFG)2

A.C.D.H(BEFG)3 B.C.D.H(AEFG)4 C.D.E.H(ABFG)5

A.B.C.D.H(EFG)6 A.C.D.E.H(BFG)7 B.C.D.E.H(AFG)8 B.C.D.H(EF)10(AG)11

A.B.C.D.E.H(FG)9 A.B.C.D.G.H(EF)10 B.C.D.E.F.H(AG)11

A.B.C.D.E.F.G.H

“Both wheels or no wheel”

(ABCDEFGH)1

C.D.H(ABEFG)2

A.B.C.D.H(EFG)3 C.D.E.H(ABFG)4

A.B.C.D.E.H(FG)5 A.B.C.D.G.H(EF)6

A.B.C.D.E.F.G.H

A–H . . . Items

(. . . )m . . . Module m

Fig. 4.19 Disassembly state graph of core 1 without hazardous modules

reduced, because three connections are grouped to one. Remember, the num-
ber of levels of the disassembly state graph equals the number of connections
that hold the core together. The resulting graph contains 13 states. In total
11 modules remain. These are renumbered to form a sequence starting at
one and ending with the number of modules and states. For completeness,
the corresponding and/or graph is shown in Fig. 4.20, left. The notation of
the arrows is as follows: module m = 4 can be disassembled to module 6 or
8 or (10 and 11). This significant decrease of states and modules is caused
by the fact that item H is rather “deep” in the core. If item H would have
been the first to remove anyways, no reduction of states would occur.
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ABCDEFGH1

Without hazardous items

ABEFG2

BEFG3 AEFG4 ABFG5

EFG6 BFG7 AFG8

FG9 EF10 AG11

ABCDEFGH1

“Both wheels or no wheel”

ABEFG2

ABFG3EFG4

FG5 EF6

. . .m Module m
Or
And

Fig. 4.20 And/Or graph of core 1 without hazardous modules

Adding the aspect of taking off either both wheels or no wheel reduces
to disassembly state graph even more (see Fig. 4.19, bottom). Starting from
the state with module ABEFG either item E is separated or items A and B
are taken off. Hence, only two further states result. Of course, the and/or
graph is also reduced, because all modules with item A and B in different
modules are not allowed. Other than with not allowing hazardous modules,
the grouping of A and B leads to modules with different size on the same
level in the and/or graph (see Fig. 4.20, right).

The information of the graphs is coded in the module definition and
additional item matrix. Whereas the module definitions of the corresponding
rows of the original size are identical, the additional item matrix has to be
recalculated. For example, module EF has only item B as additional item
in the original version (see Table 4.2 on page 164, row m = 49). But with
the reduced possibilities the number of additional items increases, because
now module EF always appears with the single items B, C, D, and H (for
the non-hazardous version) and A, B, C, D, G, and H (for the two-wheels
version). The matrices are listed in Table 4.35.
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Table 4.35 Reduced module definition and additional item matrix core 1

non-hazardous version

module definition matrix δ1,m,i additional item matrix α1,m,i

module item item

m A B C D E F G H A B C D E F G H

1 1 1 1 1 1 1 1 1 . . . . . . . .
2 1 1 . . 1 1 1 . . . 1 1 . . . 1
3 . 1 . . 1 1 1 . 1 . 1 1 . . . 1
4 1 . . . 1 1 1 . . 1 1 1 . . . 1
5 1 1 . . . 1 1 . . . 1 1 1 . . 1
6 . . . . 1 1 1 . 1 1 1 1 . . . 1
7 . 1 . . . 1 1 . 1 . 1 1 1 . . 1
8 1 . . . . 1 1 . . 1 1 1 1 . . 1
9 . . . . . 1 1 . 1 1 1 1 1 . . 1
10 . . . . 1 1 . . . 1 1 1 . . . 1
11 1 . . . . . 1 . . 1 1 1 . . . 1

“both wheels or no wheel” version

module definition matrix δ1,m,i additional item matrix α1,m,i

module item item

m A B C D E F G H A B C D E F G H

1 1 1 1 1 1 1 1 1 . . . . . . . .
2 1 1 . . 1 1 1 . . . 1 1 . . . 1
3 . . . . 1 1 1 . 1 1 1 1 . . . 1
4 1 1 . . . 1 1 . . . 1 1 1 . . 1
5 . . . . . 1 1 . 1 1 1 1 1 . . 1
6 . . . . 1 1 . . 1 1 1 1 . . 1 1

A dot denotes a value of zero.

The update of the modules entails an update of the saved cost and time
information for this core. The original values are listed in Table 4.14. The
joint times and cost stay unchanged so that the saved cost and time is
calculated straightforward (see Table 4.36). The variables for module m = 1
of core c = 1 must be set to zero, i.e., Y M

1,1 = Y R
1,1,r = Y D

1,1,d = 0. The number

of modules M1 is either set to 11 or six and the mapping between the nodes
of the distribution, recycling, and disposal graph and the module and item
index LA

1,w needs to be updated, too.
With these modifications the model can be solved. A profit of 30,739e

and 30,645e is gained with solution times of 2,698 s and 24,456 s for the non-
hazardous and two-wheels version, respectively. We see, that the first equals
the optimal solution found faster and the second is obviously a suboptimal
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Table 4.36 Saved cost and time of modules of reduced core 1

non-hazardous version

module m

1 2 3 4 5 6 7 8 9 10 11

cJ1,m 300 112.5 108.75 108.75 97.5 105 93.75 93.75 90 15 3.75

tJ1,m 10 3.75 3.625 3.625 3.25 3.5 3.125 3.125 3 0.5 0.125

“both wheels or no wheel” version

module m

1 2 3 4 5 6

cJ1,m 300 112.5 105 97.5 90 15

tJ1,m 10 3.75 3 3.25 3 0.5

solution. Comparing the solution times shows that reducing the number
of decision variables not always leads to a reduction of the solution time.
What we also see is that only the reduction of the number of modules does
not really help on speeding up the solution time. On the other hand, this is
expected, because the main driver of the model size is the core graph, which
solely depends on the number of items.

4.5.4 Alternative condition constraints

In Sect. 4.2.2.2 the developing of the condition constraints started with a
set of constraints considering superordinate modules to limit the available
quantities for particular module and item usage. As shown there, this for-
mulation does not prohibit all infeasible solutions. However, if the found
solution is feasible—in terms of the modules and item usage according to
the expected condition of the cores—this solution is an optimal one. This
means that the solution of the flexible planning model delivers the same
optimal profit. (Note that the solution besides the profit can be different.)

The mentioned approach does not include the core, distribution, recy-
cling, and disposal graphs, which leads to a significant decrease of model
size. Thus, a significant speed up of the solution time is expected so that it
is worth trying to solve this model first. If the resulting solution is feasible,
the optimal solution is found. Otherwise, further steps are necessary. These
steps could include solving the correct flexible planning model or any of the
above mentioned approaches.
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The flexible planning model with the substituted condition constraints is
listed in the sequel. The equations are not in detail explained, because they
are discussed in the relevant Sect. 4.2.2.2 and 4.2.3. The model is labelled
(AC) in the following.

Objective function:

Maximise P = R− C (4.208)

R =
∑
e

rIeQ
I
e +

∑
f

rMf QM
f +

∑
r

rRr Q
R
r (4.209)

C =
∑
c

(
cAc + cJc,1

)
QC

c −
∑
c

Mc∑
m=1

cJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
+
∑
d

cDd Q
D
d (4.210)

Item flow constraints:

QC
c = XI

ci +
∑
r

XR
cir +

∑
d

XD
cid +

Mc∑
m=1

δcmi

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c, i ∈ {1, . . . , Īc} (4.211)

QR
r =

∑
c

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ∀ r (4.212)

QD
d =

∑
c

Īc∑
i=1

wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠ ∀ d (4.213)

XI
ci +

∑
r

XR
cir +

∑
d

XD
cid ≥

Mc∑
m=1

αcmi

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c, i ∈ {1, . . . , Īc} (4.214)

QI
e =

∑
(c,i)∈Pe

XI
ci ∀ e (4.215)
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XI
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (4.216)

QM
f =

∑
(c,m)∈Rf

Y M
cm ∀ f (4.217)

Y M
cm = 0 ∀ (c,m) /∈

⋃
f

Rf (4.218)

Condition & Damaging constraints:∑
m̃∈

{
m̃

∣∣∣∣δcmi≤δcm̃i ∀ i,
(c,m̃)∈⋃

f Rf

}Y M
cm̃ ≤

∏
i∈{i|δcmi=1}

(1−ζci)(1−ηci)Q
C
c ∀ (c,m) ∈

⋃
f

Rf

(4.219)

XI
ci + (1− θci)

∑
m∈

{
m

∣∣∣∣ δcmi=1,
(c,m)∈⋃

f Rf

}Y M
cm ≤ (1− ζci)(1− ηci)(1− θci)Q

C
c

∀ (c, i) ∈
⋃
e

Pe (4.220)

∑
m̃∈

{
m̃

∣∣∣∣ δcmi≤δcm̃i ∀ i,
(c,m̃)∈{1,...,Mc}

}

(
Y M
cm̃ +

∑
r

Y R
cm̃r

)
≤

∏
i∈{i|δcmi=1}

(1− ζciιci)Q
C
c

∀ c,m ∈ {1, . . . ,M c} (4.221)

∑
r

⎛⎝ Mc∑
m=1

δcmiY
R
cmr +XR

cir

⎞⎠+

Mc∑
m=1

δcmiY
M
cm +XI

ci ≤ (1− ζciιci)Q
C
c

∀ c, i ∈ {1, . . . , Īc} (4.222)

Purity constraints:

ωrQ
R
r ≤

∑
c

Īc∑
i=1

πcirwci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ∀ r (4.223)
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XR
cir = 0 ∀ (c, i) ∈ H, r (4.224)

XD
cid = 0 ∀ (c, i) ∈ H, d ∈ {1} (4.225)

Y R
cmr = 0 ∀ (c,m) ∈ {(c,m)|δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}

}
, r
(4.226)

Y D
cmd = 0 ∀ (c,m) ∈ {(c,m)|δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}

}
, d ∈ {1}
(4.227)

Limit constraints:

QC
c ≤ QC

c ≤ QC
c ∀ c (4.228)

QI
e ≤ QI

e ≤ DI
e ∀ e (4.229)

QM
f ≤ QM

f ≤ DM
f ∀ f (4.230)

QR
r ≤ QR

r ≤ DR
r ∀ r (4.231)

QD
d ≤ QD

d ≤ QD
d ∀ d (4.232)

∑
c

tJc,1Q
C
c −

∑
c

Mc∑
m=1

tJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
≤ L̄ (4.233)

Domain:

XI
ci, X

R
cir, X

D
cid, Y

M
cm, Y R

cmr, Y
D
cmd ∈ Z

∗

∀ c, i ∈ {1, . . . , Īc},m ∈ {1, . . . ,M c}, r, d (4.234)

Solving this model considering all three cores with the given data, results in
an infeasible solution. The quantities to acquire are 30, 218, and 31 for the
three cores. These equal the ones from the optimal solution, but the module
and item selection, e.g., for core 1, is infeasible. Thus, for our numerical
example this model cannot be used straight away. With a solution time of
only 0.42 s it would be too bad to not use this model.

One way of using it is the integration in the approach discussed in
Sect. 4.5.1 where a solution based on the continuous solution is sought. For
this approach the following modification integrates the above mentioned
model. Every time the integral solution for each individual core is deter-
mined, it is first tried with the above (AC) model and if that fails the model
with the correct condition constraints is used, as described in the above sec-
tion. To avoid infeasible solutions, the bounding of the decision variables is
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set according to the continuous solution. The procedure is illustrated in the
following.

Solving the model (AC) with all three cores leads to an infeasible solution.
The infeasibility is detected after determining the states (see Sect. 4.4.1) and
the attempted assignment of the states to the corresponding units of a core
(see Sect. 4.4.2, Eqs. (4.173) et seqq.). When this assignment—given the
planned quantity of cores with correctly expected conditions—is not possi-
ble, the found solution is infeasible. In the case of infeasibility, the continu-
ous solution with the flexible planning model is determined (see Sect. 4.5.1).
This continuous solution is depicted in Table 4.32. For core 1, we find the
following values: XI

1,A = 13.5, XI
1,B = 13.5, XI

1,E = 29.7, XR
1,C,1 = 29.96,

XR
1,D,1 = 29.96, XD

1,C,1 = 0.04, XD
1,D,1 = 0.04, XD

1,H,2 = 30, Y R
1,28,1 = 0.09,

Y R
1,34,1 = 0.07, etc.
The solution we look for should be somewhere in the neighbourhood of

these values. Of course, the specification of what the neighbourhood is, i.e.,
which specific interval, needs to be researched further. At this point, only an
illustration of an alternative solution method is sketched. Therefore, a bound
of a by one increased value for each decision variable that is greater than
zero is chosen. This means that the decision variable XI

1,A in model (AC) is
bounded by �13.5	+1 = 14 based on the continuous solution. For recycling
and disposal the bound calculation is generally the same, but the sum over
all recycling or disposal categories is relevant. (In terms of condition, it is
irrelevant which particular recycling or disposal bin the module or item is
allocated to.) Thus, e.g.,

∑
r X

R
1,C,r has to be lower than 29.96 + 1, which

equals �29.96	 + 1 = 30 for integer values. All decision variables that are
zero in the continuous solution with exception of the item disposal XD have
to be zero in the integral solution, too.

For a specific core c̃ that the integral solution is sought, the model to be
solved is the following. It equals the one in Sect. 4.5.1 only that the condition
constraints are substituted and the variable value bounding is added. The
objective function and item flow constraints are unchanged, i.e.,

Maximise P = R− C , (4.235)

R =
∑
e

rIeQ
I
e +

∑
f
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∑
r
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r , (4.236)
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(4.237)
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and



286 4 Flexible disassembly planning

Y M
c̃m = 0 ∀ (c̃,m) /∈

⋃
f

Rf . (4.245)
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The purity constraints and the limit constraints are taken unchanged.
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In addition, the limit constraints are extended by
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for the focussed core c̃.
When we start with core 1 for fixing the integer variables, the above

model with c̃ = 1 is solved. The solution for core 1 is feasible. Thus, the
integral values replace the continuous values of core 1. The overall profit
(i.e., for all three cores together) with integer variables for the first core
reduces to 33,003.67e. Applying the model on core 2 with the updated
quantities also results in a feasible solution. After integrating the integral
values into the continuous values leads to an overall profit of 31,707.89e.
The third core is optimised in the same way. A feasible solution is gained
and merged into the continuous solution.53 Finally, the resulting profit for
the integral solution is 30,564.1e. This is less than what has been achieved
with the proposal in Sect. 4.5.1, but the solution time is only 29.48 s, where
29.42 s thereof are necessary to solve the (AC) model first (delivering an
infeasible solution) and afterwards the continuous flexible planning model.

With this relative fast solving of the model (AC), the cores do not have
to be solved individually. It is also possible to solve model (AC) with bounds
based on the solution of the continuous flexible planning. Doing it as de-
scribed above, i.e., allowing the decision variables a value of maximal the
next bigger integer value from the continuous solution, all three cores can
be optimised simultaneously. The resulting solution is gained in 0.11 s and
has a profit of 30,619e. In total, the solution time is 29.53 s with a profit

53 The core, distribution, recycling, and disposal graph variables of the continuous are
of course not updated.
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of 30,619e, which is faster and better than the approach in Sect. 4.5.1.
Again, the proposed approaches in this section are just ideas to start de-
veloping methods of solving the flexible planning problem faster and most
likely suboptimal. From the presented approaches this last one is probably
very promising for further research.

4.6 Concluding remarks

In this chapter the considerations from the complete disassembly planning
of the first chapter were extended to the flexible disassembly planning. With
complete disassembly planning there exists no option of disassembling one
core into different modules and items. However, the flexible disassembly
gives the decision maker the freedom to gain different sets of modules and
items from different units of the same core. This is an extension to the incom-
plete disassembly, because incomplete disassembly indicates that groups of
items can be kept together and are not fully disassembled. If the disassembly
sequence is identical for each unit of a core, such an incomplete disassembly
problem can be planned with complete disassembly approaches. Not until
the flexible planning the modelling of the disassembly depth in combination
with the quantity planning is necessary, to gain a solution with best profit
achievable.

From these two planning problems, the disassembly depth planning is
generally more complex than the quantity planning. Thereby, graphical ap-
proaches like the and/or graph are very often used. Hereby, the problem is
visualised with such a graph and usually the solution finding is based on
such a graph. Furthermore, the large number of sequences is reduced by
geographical, technical, and topological constraints. But still, for cores con-
sisting of many items the graphs become huge, in general. When sequence
dependent disassembly cost is accounted for, each feasible sequence has to
be considered. For sequence independent disassembly cost many sequences
could lead to the same disassembly state with the same cost. Thereby, a dis-
assembly state represents the result of the disassembly process, i.e., which
items and modules exist in the end.

In this work sequence independent disassembly cost are assumed. The
reason is that they are truly sequence independent or that the differences
are negligible, because the disassembling is done mostly manually and for
the planning the approximation is sufficient. Because of this assumption the
disassembly state graph is the basis for the flexible planning. It contains the
necessary item and module information for the planning.
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In addition, the expected condition of incoming cores is included in the
planning, too. This is also considered in the complete disassembly plan-
ning, but for the flexible planning this causes a major increase of complex-
ity.54 A mathematical model to determine the optimal solution is developed.
Thereby, an optimal solution is characterised by the maximum profit that
can be achieved with quantities to acquire of several cores. The considered
constraints are demand of reusable items and modules as well as recyclable
items and modules, other acquisition and distribution limitations, purity
requirements for recycling quantities, hazardous items, the expected con-
dition of items of cores, damaging of items, and the available labour time.
Depending on the condition (i.e., is it genuine, functioning, and/or of wrong
material) the usage of items and modules is limited (distribution for reuse,
recycling, and/or disposal).

The optimal planning is demonstrated with a numerical example com-
prising three cores, each consisting of eight items and 50 modules. The op-
timal solution of the planning model is gained and evaluated in comparison
to a solution with no extra module demand, the best two-stage approach,
and with limited number of disassembly states. With the resulting solution
(i.e., quantities of cores, items, and modules) the corresponding disassembly
states and assignments of the incoming units of cores need to be determined.
For specifying the required disassembly states and how often a disassembly
ending in this state is necessary (i.e., state quantity) an approach based
on linear programming and an alternative one are developed. Given these
state quantities, the condition of a unit of an incoming core, and the in-
formation about the usage specific planned quantities in combination with
the expected quantities of items and modules, the assignment of the units
to a particular disassembly state as well as the usage of the resulting items
and modules is gained. The assignment can be done with mathematical
programming for the batch of all units or based on priority values for a
successive assignment, i.e., unit by unit. The latter has the benefit that not
all units need to be tested prior the disassembly of the first unit.

The flexible disassembly planning is rather complex, which is easily ob-
servable by the relative long solution time of the model. Therefore, a few
ideas on how to achieve faster solving with the aspects mentioned in this
work are discussed. However, a faster solving usually comes along with a
suboptimal solution. The trade-off the decision maker has to face is the
solving time and the appearing gap to the optimal solution. Based on the

54 The problem is NP-complete especially since the integer planning is NP-complete. Cf.
Schrijver (2000): Theory of LP and ILP , p. 245. Besides this complexity definition the
model size, i.e., the number of variables and constraints, is meant by the term complexity.
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illustration of the ideas with the numerical example the approach that starts
with the continuous solution of the flexible planning with a subsequent solv-
ing of a model with alternative condition constraints to find integer values
is favoured. Admittedly, further research and evaluation is recommended.
In addition, alternative approaches of finding good solutions fast (e.g., spe-
cific heuristics or meta-heuristics) can be developed and evaluated with the
optimal flexible disassembly planning.



Chapter 5

Résumé

This work considers several aspects of the disassembly planning. The com-
plete disassembly planning problem is the first aspect. It is the basis for all
further extensions that are considered in this work. The planning aims at
determining the optimal quantities of cores to acquire, items to distribute,
material to recycle, and waste to dispose of in order to gain the maximal
profit. Thereby, the profit calculation includes revenues of item distribution
and material recycling. On the other hand, the cost covers acquisition, dis-
assembly, and disposal cost. The planning problem comprises more than one
core, which makes the inclusion of commonality and multiplicity necessary.
Moreover, the planning aims at meeting a given demand for item distribu-
tion and material recycling. Thereby, it is assumed that only whole cores
are acquired and supplied.

Furthermore, new aspects are incorporated like the special treatment for
hazardous items, the material purity for recycling, the core condition, as
well as further supply and distribution limits. The usage of hazardous items
is restricted only to the options of distribution (if demanded) and hazardous
waste disposal. In addition, the material purity requested by some recycling
companies is explicitly considered in the planning. In general, the disassem-
bling companies face uncertainties about the condition of the acquired cores.
This includes defective and replaced items, even with the wrong material.
Depending on the condition, the usage of the corresponding item is limited
to certain usage options only. Thereby, the information about the condi-
tions is given in form of probabilities per item and core, whereupon it is
assumed that they are identically and independently distributed. The con-
sidered conditions are whether an item of a core is functioning or defective,
genuine or non-genuine, and of the right or wrong material.

C. Ullerich, Advanced Disassembly Planning,
DOI 10.1007/978-3-658-03118-3_5, © Springer Fachmedien Wiesbaden 2014
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In addition, the possible damaging of an item during the disassembly
process is also integrated. These probabilities are used in a deterministic
planning approach. The last added aspect is that of limits. One considered
limit is that of the available labour time. The others refer to the acquisition
and usage. This means that for all interfaces to external companies a lower
and an upper limit can be set. Thereby, the given demand is equivalent
to an upper limit for the corresponding item or material. If the lower limit
equals that of the demand, the approach is equivalent to the disassembly-to-
order planning. All the above mentioned is consistently integrated in every
planning problem presented in this work, with the exception of the labour
time in the multi-period planning.

The providing of limits can be used to mark intervals where the price
or unit cost is identical for each unit, i.e., a fixed price or unit cost. But
sometimes it might be necessary to find the optimal quantity where prices
and unit cost change depending on the quantity without limiting the val-
ues to a certain interval. This way, the market behaviour can be explicitly
integrated in the planning. In this work, two price-quantity dependencies
are discussed.1 The first is the case with linear dependencies between the
quantity and the corresponding price or unit cost for item reuse, material re-
cycling, core acquisition, and disposal. Hence, all interfaces to business part-
ners are considered. Following the argumentation of the price and unit-cost
development depending on the quantity, it is shown that the profit function
is concave, which indicates a unique optimum. This can be determined with
solution approaches for quadratic optimisation problems (e.g., the gradient
projection method) and with standard solver software like GUROBI.

The second case is more general and the first case is a special one of
the second. Here, piecewise linear price-quantity dependencies can be mod-
elled. With this generalisation, more specific price-quantity dependencies
and even better approximations of non-linear dependencies can be mod-
elled. The drawback, to the best of our knowledge, is a missing solution
method for the resulting problem. Therefore, a solution method is devel-
oped that can be used to solve the problem in the domain of real numbers.
This method is in a further step enhanced to solve mixed integer problems
with a concave objective function that also contains linear summands. The
focus in this work is to achieve the solving with standard solver software for
linear and quadratic problems, because they already have good performance
and overcome the numerical issues when applying theoretical approaches to
limited precision computers.

1 The term price-quantity dependency always includes the unit-cost-quantity dependen-
cies, too.
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A further extension of the initial complete disassembly planning prob-
lem is the consideration of multiple periods. But this is not just a sequence
of single periods planned together. A storage for cores and one for items
is introduced. Thereby, the item storage contains a section for the storage
of hazardous items. The storage spaces are limited and each storage has
its particular cost. Furthermore, contractual aspects are integrated. This
not only means the compliance with contracted quantities and purity, but
also contractual penalties in the case that the quantities are not met. How-
ever, a core specific acquisition level is guaranteed. The contracting options
with respect to the considered periods for the recycling material purity are
discussed. We derive that the purity should be met in every period. Alter-
natively, past periods could be integrated, too. Moreover, the multi-period
planning is realised with a rolling horizon planning, which incorporates the
business practice in a way that an infinitely on-going business is assumed
and that the inventory is not forced to a given value at the end of the
planning horizon. The results of the planning are evaluated with a total
planning of the setting of the numerical example. This evaluation shows a
good performance of the approach for the given example.

After these considerations of the complete disassembly planning, the fo-
cus is shifted to the flexible disassembly planning. This is a generalisation
from complete to incomplete disassembly. We chose the disassembly state
graph as appropriate tool to identify paths to find possible modules and
items. This allows the disassembly planning of cores with an arbitrary struc-
ture. If the decision maker picks only one of the possible states of the disas-
sembly state graph a priori, the planning can afterwards be conducted with
a complete disassembly planning approach. On the other hand, if for each
core more than one different disassembly state can be selected, we denote
the planning as flexible disassembly planning. With this given possibility,
modules and module constituent items can be demanded separately. This is
possible, because a fraction of the quantity of a core can be disassembled to
one state where the module is gained and another fraction is disassembled
to another state where the module is further separated into items.

In this approach the aspects of the basic model are incorporated, too.
With respect to the modelling of the core condition, the model to solve
becomes particularly large. The modelling is graph based with one graph
representing the various item conditions of a core (we call it core graph)
and three further graphs for the usage options (we call them distribution,
recycling, and disposal graph). Using a numerical example, the benefit of
the flexible planning is shown in comparison to the complete disassembly as
well as the best two-stage approach. In addition, the effect of limiting the
allowed number of disassembly states per core and for all cores is discussed.
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The determined optimal quantities with regard to the profit cannot be
used directly by the disassembly person or automated disassembly system.
In a first step the necessary states are ascertained. Given these and the
planned quantities for the usage options, for each single unit of a core the
concrete disassembly state is assigned and the usage options for the resulting
items and modules are specified. Hereby, a practical handling guidance is
developed. Moreover, a comprehensive framework including the planning
and disassembly guideline generation for the flexible disassembly planning
problem is developed.

With the examinations in this work the initially formulated research ques-
tions Q1–Q4 in Sect. 1.2 should now be answered. Question one—regarding
the incorporation of price-quantity dependencies—can be positively an-
swered; with the limitation that only linear and piecewise linear dependen-
cies for interfaces to all external partners were considered. Nonetheless, the
piecewise linear dependencies can be used to approximate other non-linear
dependencies to some extent. The second question focusses on the contract-
ing support with dynamic planning. Firstly, contractual aspects like penalty
cost and a guarantee level have been introduced. Afterwards, a framework
has been developed that considers future period information in the plan-
ning of the period in focus. The framework also includes a decision support
for the contracting in future periods, thus a possible contracting support is
developed.

In order to answer question three about the usefulness of flexible plan-
ning, a corresponding planning model is generated. It could be shown that
the flexible disassembly planning is beneficial. However, the planning leads
to a large sized model. The resulting optimal solution can also be transferred
to a concrete disassembling guideline, which makes the planning applicable
for practice and answers the fourth question positively.

Even though the research questions could be sufficiently answered, some
drawbacks exist and further research is necessary. To start with, we pick up
on the last mentioned aspect: the flexible disassembly planning. The devel-
oped approach causes a rather large sized model, which makes the planning
of real sized objects unmanageable. To overcome this problem either an
alternative solution approach is to be developed or a heuristic solution ap-
proach should be found. First ideas for speeding up the solving with the
methods developed in this work are already discussed. These include using
the optimal real valued solution to find an integral solution for each core
separately. This transforms the problem to some degree into single core
problems. This approach delivers good results in a moderate time. On the
contrary, fixing the solution time results in worse objective values than the
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aforementioned approach. The reason is the finding of a feasible solution is
already time consuming.

The reduction of the disassembly state graph by undesirable states helps
mainly in reducing the number of modules and states, but has marginal
influence on the solution time if not negative influence. This nicely illustrates
that the size of the model does not necessary correlates with the solution
time. A last sketched idea is the use of the optimal real valued solution
and determine the integral solution for each core separately or jointly, but
with the help of different condition constraints. These constraints partly
allow infeasible solutions, but the resulting model is solved much faster. If
the gained solution is feasible the solution is used and otherwise the correct
condition constraints must be used. This latter approach is the one to favour
according to the analysis with the numerical example in this work. However,
this result is not sound such that further research is highly advisable in this
area.

Furthermore, the assignment of the incoming cores to the appropriate
disassembly states and usage options is presented for a prior batch testing
and a successive alternative. The latter is priority based and should be
validated with further test sets. In addition, the usage option assignment
might be extended to the specific material recycling boxes and disposal bins.
This extension is straightforward, because the planned quantities of items
and modules of the cores together with the assignment of the items and
modules to recycling and disposal is given. The only problem that might
occur is that of a different condition realisation compared to the expected
one. However, this problem already arises in the assignment stage, even in
the assignment based on the batch testing. Here, options for a preferably
small deviation from the optimal solution are sought.

With regard to the price-quantity dependencies, a consideration of other
often used dependencies formulated with isoelastic, exponential, and al-
gebraic functions are of interest. In addition, the consistent integration of
condition considerations, purity requirements, and hazardous items in other
research areas, like disassembly sequencing, scheduling, and line balancing,
should be forced, where applicable. Lastly, the integration of the disassembly
states for the flexible disassembly planning is a step towards a combination
of disassembly sequencing and disassembly (or disassembly-to-order) plan-
ning. This could be pushed even further and towards an automated disas-
sembly, because of presumably growing quantities of products to disassem-
bly to gain valuable materials and to recover the value added in products.
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Appendix to Chapter 2

Infeasible solution of KONGAR /GUPTA DTO system

The optimal solution presented in the paper by Kongar/Gupta is not
feasible.1 This can be shown with two examples. Taking the obtained value
of λ = 0.417 and the value of g3 = NRU + NRC = 47,087 and using
constraint (41) of the original paper, the inequality

0.20λ ≤ 0.001(g3 − 48,000) + 0.8 (A.1)

is not fulfilled. Furthermore, the level of achievement of the membership
function μ3 (see constraint (40) of the original paper) results in μ3(g3 =
47,087) = 0.2175 which does not equal the stated value of 0.1044.

Another unsatisfied constraint is that of inequality (23) of the original
paper. A weaker formulation of the constraint is∑

j

Dj (1 + αj + βj + γj) ≤
∑
j

∑
i

Xij . (A.2)

Using the given data for Dj , αj , βj , and γj the left side of the inequality
equals 10,530. The right side equals NRU (see Eq. (29) of the original pa-
per). But, the value of NRU is not explicitly given in the results. But NRU
can be calculated by using NRU +NRC = 47,087 and NRC = 37,337, so
that NRU = 9,750. This leads to an unmet inequality (A.2), because the
left side is greater than the right side. Since this weaker constraint is not
satisfied the more specific constraint (23) cannot be fulfilled either.

1 Cf. Kongar/Gupta (2006b): Disassembly to order , pp. 552–559.
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Appendix to Chapter 3

B.1 Basic model with destructive and non-destructive
disassembly cost differentiation

The basic model in Sect. 3.1.2 does not include a differentiation in destruc-
tive and non-destructive disassembly cost. Following the work by Kongar/
Gupta an inclusion of cost differentiation leads to the following model.1

The model structure is depicted in Fig. B.1. As can be seen, the variables
XN and XF are added for non-destructively and destructively, respectively,
gained items. Furthermore, several additional constraints need to be added
as well and more data for the planning must be collected. The calculation
of the revenues and the profit is identical to the basic model.

Maximise P = R− C (B.1)

R =
∑
e

rIeQ
I
e +

∑
r

rRr Q
R
r (B.2)

But the cost is expanded by the differentiated cost factors cJNci and cJFci
that represent the disassembly cost for an item with non-destructive and
destructive disassembly, respectively.

C =
∑
c

cAc Q
C
c +

∑
c

Īc∑
i=1

(
cJNci X

N
ci + cJFci X

F
ci

)
+
∑
d

cDd Q
D
d (B.3)

1 Cf. Kongar/Gupta (2006b): Disassembly to order .

C. Ullerich, Advanced Disassembly Planning,
DOI 10.1007/978-3-658-03118-3, © Springer Fachmedien Wiesbaden 2014
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Fig. B.1 Basic model structure with disassembly differentiation

Item flow constraints The flow of items through the two disassembly
options requires two new constraints. The first one assures that all cores are
disassembled in one of the two ways.

QC
c = XN

ci +XF
ci ∀ c, i ∈ {1, . . . , Īc} (B.4)

The second constraint limits the items to reuse additionally to the ones that
are non-destructively disassembled and undamaged during the process.

XI
ci ≤ (1− θci)X

N
ci ∀ (c, i) ∈

⋃
e

Pe (B.5)

The remaining item flow constraints are kept as are most of the constraints.

QC
c = XI

ci +
∑
r

XR
cir +

∑
d

XD
cid ∀ c, i ∈ {1, . . . , Īc} (B.6)

QR
r =

∑
c

Īc∑
i=1

wciX
R
cir ∀ r (B.7)
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QD
d =

∑
c

Īc∑
i=1

wciX
D
cid ∀ d (B.8)

QI
e =

∑
(c,i)∈Pe

wciX
I
ci ∀ e (B.9)

XI
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (B.10)

Condition constraints∑
d

XD
cid ≥ ζciιciQ

C
c ∀ c, i ∈ {1, . . . , Īc} (B.11)

XI
ci ≤ (1− ζci)(1− ηci)(1− θci)Q

C
c ∀ (c, i) ∈

⋃
e

Pe (B.12)

The second of the optional constraints (i.e., Eq. (3.11)) is skipped here.

Purity constraints No changes are necessary for the purity considera-
tions.

ωrQ
R
r ≤

∑
c

Īc∑
i=1

πcirwciX
R
cir ∀ r (B.13)

XR
cir = 0 ∀ (c, i) ∈ H, r (B.14)

XD
cid = 0 ∀ (c, i) ∈ H, d ∈ {1} (B.15)

Limits constraints

QC
c ≤ QC

c ≤ QC
c ∀ c (B.16)

QI
e ≤ QI

e ≤ DI
e ∀ e (B.17)

QR
r ≤ QR

r ≤ DR
r ∀ r (B.18)

QD
d ≤ QD

d ≤ QD
d ∀ d (B.19)

If the disassembly cost is differentiated, it is obvious that the disassembly
times differ, too. Especially, because the manual labour is the main driver
for the disassembly cost. Thus, the aggregated times tJc are substituted by
tJNci and tJFci as with the cost in Eq. (B.3).

∑
c

Īc∑
i=1

(
tJNci X

N
ci + tJFci X

F
ci

) ≤ L̄ (B.20)
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Because of the (equality) Eqs. (B.4) and (B.6), one of the new variables is
completely explained. Thus, only one of them (e.g., XN

ci) is added to the list
of variables with the integer domain.

XI
ci, X

N
ci, X

R
cir, X

D
cid ∈ Z

∗ ∀ c, i ∈ {1, . . . , Īc}, r, d . (B.21)

The accessory properties for the disassembly differentiation cause that the
number of decision variables and the number of constraints increase by

∑
c Īc

and
∑

c Īc + |⋃e Pe|, respectively, compared to the model in appendix B.2.
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B.2 Compact basic model formulation

The model presented here is equivalent to the one in Sect. 3.1.2. The dif-
ference is that the variables, which are completely explained by some con-
straints, are substituted by the explaining term. This starts already with
the objective function. The variables P , R, and C are the first ones to sub-
stitute. Within these equations the variables QC

c , Q
I
e, Q

R
r , and QD

d need to
be substituted, too. The resulting objective is

Maximise
∑
e

rIe
∑

(c,i)∈Pe

wciX
I
ci +

∑
r

rRr
∑
c

Īc∑
i=1

wciX
R
cir

−
∑
c

(
cAc + cJc

)(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

)

−
∑
d

cDd
∑
c

Īc∑
i=1

wciX
D
cid . (B.22)

Analogously, the variables QC
c , Q

I
e, Q

R
r , and QD

d are substituted by the cor-
responding terms in all other constraints. The constraints are also arranged
in groups for a better comparison.

Item flow constraints

XI
c,1+

∑
r

XR
c,1,r+

∑
d

XD
c,1,d = XI

ci+
∑
r

XR
cir+

∑
d

XD
cid ∀ c, i ∈ {2, . . . , Īc}

(B.23)

XI
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (B.24)

Condition constraints

∑
d

XD
cid ≥ ζciιci

(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

)
∀ c, i ∈ {1, . . . , Īc}

(B.25)

XI
ci ≤ (1− ζci)(1− ηci)(1− θci)

(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

)
∀ (c, i) ∈

⋃
e

Pe (B.26)
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The redundant Eq. (3.11) is neglected here.

Purity constraints

ωr

∑
c

Īc∑
i=1

wciX
R
cir ≤

∑
c

Īc∑
i=1

πcirwciX
R
cir ∀ r (B.27)

XR
cir = 0 ∀ (c, i) ∈ H, r (B.28)

XD
cid = 0 ∀ (c, i) ∈ H, d ∈ {1} (B.29)

Limits constraints

QC
c ≤ XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d ≤ QC

c ∀ c (B.30)

QI
e ≤

∑
(c,i)∈Pe

wciX
I
ci ≤ DI

e ∀ e (B.31)

QR
r ≤

∑
c

Īc∑
i=1

wciX
R
cir ≤ DR

r ∀ r (B.32)

QD
d ≤

∑
c

Īc∑
i=1

wciX
D
cid ≤ QD

d ∀ d (B.33)

∑
c

tJc

(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

)
≤ L̄ (B.34)

XI
ci, X

R
cir, X

D
cid ∈ Z

∗ ∀ c, i ∈ {1, . . . , Īc}, r, d (B.35)

Once the (optimal) solution is available, the values of the substituted
variables can be determined by the following equations.

QC
c = XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d ∀ c (B.36)

QR
r =

∑
c

Īc∑
i=1

wciX
R
cir ∀ r (B.37)

QD
d =

∑
c

Īc∑
i=1

wciX
D
cid ∀ d (B.38)

QI
e =

∑
(c,i)∈Pe

wciX
I
ci ∀ e (B.39)
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R =
∑
e

rIeQ
I
e +

∑
r

rRr Q
R
r (B.40)

C =
∑
c

(
cAc + cJc

)
QC

c +
∑
d

cDd Q
D
d (B.41)

P = R− C (B.42)
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B.3 Order of section optima

The first order derivative of the objective function is

r̄ +
s̃−1∑
s=1

r̂s(Q̌s − Q̌s−1) + r̂s̃
(
2Q− Q̌s̃−1

)
(B.43)

for the section s̃, i.e., in the interval Q̌s̃−1 ≤ Q ≤ Q̌s̃ (see Eq. (3.31)). To
find the optimal Q the first order derivative must equal zero, i.e.,

r̄ +
s̃−1∑
s=1

r̂s(Q̌s − Q̌s−1) + r̂s̃
(
2Q− Q̌s̃−1

)
= 0 . (B.44)

Transforming the equation leads to the optimal solution

Qopt
s̃ =

1

2
Q̌s̃−1 − 1

2 r̂s̃

(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

))
(B.45)

for the section s̃. The optimal solution for the succeeding section s̃+ 1 is

Qopt
s̃+1 =

1

2
Q̌s̃ − 1

2 r̂s̃+1

(
r̄ +

s̃∑
s=1

r̂s
(
Q̌s − Q̌s−1

))
. (B.46)

Comparing the two optimal solutions in Eqs. (B.45) and (B.46) of the suc-
ceeding sections s̃ and s̃+ 1, respectively, results in

Qopt
s̃

?
<
> Qopt

s̃+1 . (B.47)

The expression
?
<
> shall indicate that we want to know which of the two

relations holds. Transforming the expression leads to

0
?
<
> Qopt

s̃+1 −Qopt
s̃ (B.48)

0
?
<
>

1

2
Q̌s̃ − 1

2 r̂s̃+1

(
r̄ +

s̃∑
s=1

r̂s
(
Q̌s − Q̌s−1

))

− 1

2
Q̌s̃−1 − 1

2 r̂s̃

(
r̄ +

s̃−1∑
s=1

r̂s(Q̌s − Q̌s−1)

)
(B.49)
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0
?
<
>

1

2

(
Q̌s̃ − Q̌s̃−1

)
+

1

2 r̂s̃

(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

))

− 1

2 r̂s̃+1

(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

))− r̂s̃
2 r̂s̃+1

(
Q̌s̃ − Q̌s̃−1

)
(B.50)

0
?
<
>

(
1− r̂s̃

r̂s̃+1

)
︸ ︷︷ ︸

< 0

(
Q̌s̃ − Q̌s̃−1

)︸ ︷︷ ︸
> 0

+

(
1

r̂s̃
− 1

r̂s̃+1

)
︸ ︷︷ ︸

< 0

(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

))
︸ ︷︷ ︸

≥ 0

.

(B.51)

Since r̂s̃ is greater than r̂s̃+1, the first and third term in brackets are neg-
ative. In addition, the section border Q̌s̃ is also greater than Q̌s̃−1, which
lets the second term in brackets become positive. The fourth term repre-
sents the price on the section border Q̌s̃−1, i.e., the section border where
section s̃ begins. We assume that the prices are non-negative and therefore
the overall expression on the right hand side is negative, i.e.,

0 >

(
1− r̂s̃

r̂s̃+1

)(
Q̌s̃ − Q̌s̃−1

)
+

(
1

r̂s̃
− 1

r̂s̃+1

)(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

))
(B.52)

which means that
Qopt

s̃ > Qopt
s̃+1 (B.53)

holds. Hence, the optimal solution of the section s̃ is greater than the optimal
solution of the section s̃ + 1. This is true for all neighbouring section and
because of transitivity the optimal solution of the first section is the greatest
of all section solutions and the solution of the last section is the smallest.
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B.4 Proof of objective dominance

The objective functions of the individual sections have got another property
which is very useful for determining the optimal value. As we will see in the
sequel, the value of the corresponding individual objective function of the
actual section is always less (or equal on the section borders) than the
individual objective functions of all other sections in the actual section.
This also means that the resulting objective function is the minimum of all
objective functions of the individual sections.

Equation (3.25) can be rewritten to

r(Q) = min
s̃

{rs̃(Q)} = min
s̃

{
r̄ +

s̃−1∑
s=0

(r̂s − r̂s+1) Q̌s + r̂s̃ Q

}
(B.54)

with r̂0 = 0 and Q̌0 = 0 and the first section is indexed with s̃ = 1. This is
equivalent to

r(Q) = min
s̃

{
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

)
+ r̂s̃

(
Q− Q̌s̃−1

)}
. (B.55)

Because of the monotone transformation by multiplying with a positive
number Q

min
s̃

{rs̃(Q)}Q = min
s̃

{rs̃(Q)Q} (B.56)

holds. Hence, multiplying the equations of r(Q) with Q leads to

r(Q)Q = min
s̃

{(
r̄ +

s̃−1∑
s=0

(r̂s − r̂s+1) Q̌s + r̂s̃Q

)
Q

}
(B.57)

= min
s̃

{(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

)
+ r̂s̃

(
Q− Q̌s̃−1

))
Q

}
. (B.58)

This property can also be shown using the objective function directly.
The objective value of an arbitrary section s̃ is given by

rs̃(Q)Q =

(
r̄ +

s̃−1∑
s=1

r̂s
(
Q̌s − Q̌s−1

)
+ r̂s̃

(
Q− Q̌s̃−1

))
Q (B.59)

(see Eq. (3.30)) or
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rs̃(Q)Q =

(
r̄ +

s̃−1∑
s=0

(r̂s − r̂s+1) Q̌s + r̂s̃ Q

)
Q . (B.60)

Let us compare the objective values of two succeeding sections s̃ and s̃+ 1
for the same value Q.(
r̄ +

s̃−1∑
s=0

(r̂s − r̂s+1) Q̌s + r̂s̃ Q

)
Q

?
<
>

(
r̄ +

s̃∑
s=0

(r̂s − r̂s+1) Q̌s + r̂s̃+1 Q

)
Q

(B.61)
Transforming the expression (with Q > 0) leads to

r̄ +

s̃−1∑
s=0

(r̂s − r̂s+1) Q̌s + r̂s̃ Q
?
<
> r̄ +

s̃−1∑
s=0

(r̂s − r̂s+1) Q̌s + (r̂s̃ − r̂s̃+1) Q̌s̃

+ r̂s̃+1 Q (B.62)

0
?
<
> (r̂s̃ − r̂s̃+1) Q̌s̃ + r̂s̃+1 Q− r̂s̃ Q (B.63)

0
?
<
> (r̂s̃ − r̂s̃+1)︸ ︷︷ ︸

> 0

(
Q̌s̃ −Q

)
. (B.64)

The term in the first pair of brackets is positive, because r̂s > r̂s+1. For
Q = 0 the objective value of all sections are equal with a value of zero.
For positive Q the value of the objective function belonging to section s̃
is lower than the one of section s̃ + 1 for Q less than Q̌s̃, i.e., the section
border between section s̃ and s̃ + 1. This is even true for the complete
interval of 0 < Q < Q̌s̃. For all Q greater than the section border Q > Q̌s̃

the value of the objective function of section s̃ is greater than the one of
section s̃ + 1. This is illustrated in Fig. B.2. Derived from this, all section
functions have a common intersection at Q = 0. Furthermore, each pair of
neighbouring section functions has got a further intersection at the section
border. (This is necessary to have a continuous objective function.) Since no
more intersections exist we can further derive that the value of the objective
functions of all other sections (greater or less) are greater than the value of
objective function of the corresponding section to a given Q. In the figure we
can identify that always three functions are greater than the actual objective
function of the section. What we also see is that the function of, e.g., section
four is always greater than the one of lower sections in the interval of zero
and the corresponding upper section border. For example, function four is
greater than function one from zero to the first border, greater than function
two from zero to the second border, and greater than function three from
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Fig. B.2 Course of section objective functions

zero to the third section border. But function four is not necessarily greater
than function two in section three. The markings of the section number on
the section individual optima illustrates the ordering of the optima from
right to left (i.e., big to small) as shown in Sect. B.3.
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B.5 Algorithm for solving QLP with partially defined
objective functions

In Fig. B.3 a general approach to find the optimum of the partially defined
concave quadratic objective function is depicted. Firstly, we try to find the
optimal solution based on the gradient solely with LP solving. If this fails, a
QLP solver should be used that considers the jumping gradient at the section
borders of the partially defined objective function. One such consideration
could be the procedure depicted in Fig. 3.21 for the gradient projection
method by Rosen.2 The drawback of the gradient projection method by
Rosen is the enormous matrix calculations and, thereby, especially the
inversion of matrices.

Formulate QLP
x0 := 0

i := 1

Determine xopt

xopt feasible?

no

yes

Create LP
w/ QLP constraints
& obj. := ∇z(x0)

Tx

Solve LP
→ xi

Feasible?

no

yes

QLP infeasible

Update LP
obj. := ∇z(xi)

Tx

i := i+ 1

Solve LP
→ xi

xi = xi−1

no

yes
xopt := xi

Optimum xopt

QLP sover with
consideration of
jumping gradient,
e.g., the gradient
projection method

by Rosen
→ xopt

noyes xi ∈ {xj |
j = 0, ..., i− 2}

Fig. B.3 Flow diagram LP and QLP solver

2 Cf. Rosen (1960): Gradient projection method .



314 B Appendix to Chapter 3

B.6 Proof of symmetry of quadratic function

To prove that a quadratic function of the form f(x) = a x2 + b x + c is
symmetric, we start with the equation 0 = 0. Each step we extend both
sides until we reach the desired term. The variable ε denotes the distance
from the axis of symmetry, which is the turning point xopt = − b

2 a . Starting
with

0 = 0 , (B.65)

substituting 0 by b ε− b ε

b ε− b ε = −b ε+ b ε , (B.66)

substituting b by −2 a xopt

−2 a ε xopt − b ε = 2 a ε xopt + b ε , (B.67)

adding on both sides a x2
opt + a ε2 + b xopt + c

a x2
opt − 2 a ε xopt + a ε2 + b xopt − b ε+ c =

a x2
opt + 2 a ε x+ a ε2 + b xopt + b ε+ c ,

(B.68)

and factoring both sides

a (xopt − ε)
2
+ b (xopt − ε) + c = a (xopt + ε)

2
+ b (xopt + ε) + c

(B.69)

shows that moving away from xopt by ε in both directions leads to the
identical function values. Hence, the function is symmetric around xopt.
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B.7 Proof of maximal underrun of purity level

The formula for determining the maximal underrun of the required purity
level ω depending on the study horizon length s and the number of periods
of the past p included in the planning is

ε(s, p) =
s− 1

p+ 1
(1− ω) (B.70)

(see Eq. (3.135)). As we see in Table 3.21 on 113 a reduction of the study
horizon by one period leads to a decrease of the minimal purity level possible
in the planning period by the allowed impurity (i.e., 1− ω). This is caused
by the requirement of an average of ω over p + s periods. If s is reduced
by one, a grey entry with 100% is taken away. This leaves one value less to
balance the low value of for example 60% and thus an increase to 65% is
necessary. Conversely, this means that an increase of the study horizon by
one leads to a decrease of the overall purity average, which means that the
maximal underrun increases. This increase is not the allowed impurity but
a fraction of it. And the fraction depends on the number of periods of the
past included in the planning.

As we see in the afore mentioned table, when p periods of the past are
included, p+1 periods form a group that is repeated over and over to result
in the overall achieved purity for an infinite repeating of the planning. Hence,
every additional period in the study horizon results in an increase of the
maximal underrun of the purity by 1 − ω in relation to the group length
p+ 1, i.e., 1−ω

p+1 .
To prove the dependency on s we use the mathematical induction and

start to show that the equation is true for a given s = 2.3 Note that s = 1
is our minimal study horizon. Using the values p = 3 and ω = 0.95 the
maximal underrun is 2−1

3+1 (1−0.95) = 0.0125. This equals an overall average
purity of ω − 0.0125 = 93.75%. Thus, we showed that the formula is true
for an arbitrary s. In the next step we show that the formula is true for the
next value of s. This means we assume that the formula is correct for s and
when we calculate the value for s+1, we need to show that the change from
s to s+ 1 is correct. Calculating ε for s+ 1 leads to

ε(s+ 1, p) =
(s+ 1)− 1

p+ 1
(1− ω) =

s− 1

p+ 1
(1− ω) +

1− ω

p+ 1
= ε(s, p) +

1− ω

p+ 1
.

(B.71)

3 Usually the lowest value is chosen, but to compare the result with the one in Table 3.21
we choose s = 2. The proof can easily be repeated for s = 1.
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We see that the increase of s by one leads to an increase of ε by 1−ω
p+1

compared to ε(s, p). This is exactly what we developed above. Therefore,
the equation is correct with respect to s.

Taking a look at the differences between the example for three and two
periods of the past together with a study horizon of length three, we notice
that the maximal underrun increases with less periods of the past. With
every period we include from the past the periods in the planning are in-
creased by one and the repeating group for the determination of the overall
purity level is extended by one (e.g., (75, 100, 100) for p = 2 compared to
(70, 100, 100, 100) for p = 3). The first effect equals that of extending the
study horizon, which is the decrease of the minimal purity by 1 − ω. The
second effect is that the average is based on one more value of 100%. Let us
develop the change of ε starting with the change of the average purity. The
initial average purity (e.g., 91 2/3) is denoted by ω̄0. When a further period
of the past is included, another value of 100% is added, which causes an
extension of the number of periods used for the averaging. Thus, the min-
imal purity value can be reduced by 1 − ω and the group for determining
the average is extended by one. Hence, the average purity value ω̄1 with one
more period of the past included is

ω̄1 =
ω̄0(p+ 1) + 1− (1− ω)

p+ 2
=

ω̄0(p+ 1)− ω

p+ 2
. (B.72)

To achieve the change of number of periods the average is calculated on, we
first need to multiply the “old” average with the “old” number of periods
p + 1, do the absolute changes (plus 1 and minus 1 − ω), and divide by
the “new” number of periods p + 2. But, what we want to calculate is the
maximal underrun and not the average purity. Thus, the ω̄ are substituted
by ω − ε.

ω − ε1 =
(ω − ε0)(p+ 1)− ω

p+ 2
(B.73)

ε1 = ω − (ω − ε0)(p+ 1)− ω

p+ 2
= ε0

p+ 1

p+ 2
(B.74)

This is the change of ε, when we increase the number of periods of the past
by one.

Again using the mathematical induction we showed already that the
equation is correct for an arbitrary p.4 Now we need to demonstrate that
the increase from an arbitrary value is correct. Therefore, we calculate

4 We showed it for p = 3, which could easily repeated with p = 0 as minimal value of p.
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ε(s, p+1) =
s− 1

(p+ 1) + 1
(1−ω) =

s− 1

p+ 1
(1−ω)

p+ 1

p+ 2
= ε(s, p)

p+ 1

p+ 2
(B.75)

and see that the change is exactly the term p+1
p+2 multiplicatively linked to

ε(s, p). Hence, we also proved the correctness with respect to p and subsume
that the equation is correct for determining the maximal underrun of the
purity requirement for a long-term consideration depending on study hori-
zon s and number of past periods p. We do not consider ω separately in the
equation, because it is obvious that the allowed impurity 1 − ω has linear
influence on the maximal underrun.
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B.8 Compact dynamic model

The transformation applied are based on the following equations under the
assumption that the t are greater than or equal τ .

QC
tc = XI

t,c,1 +
∑
r

XR
t,c,1,r +

∑
d

XD
t,c,1,d (B.76)

QR
tr =

∑
c

Īc∑
i=1

wciX
R
tcir (B.77)

QD
td =

∑
c

Īc∑
i=1

wciX
D
tcid (B.78)

QI
te =

∑
(c,i)∈Pe

XI
tci (B.79)

V C
tc = V C

τc +

t−1∑
l=τ

(
Q̃C

lc −XI
l,c,1 −

∑
r

XR
l,c,1,r −

∑
d

XD
l,c,1,d

)
(B.80)

V I
te = V I

τe +

t−1∑
l=τ

⎛⎝ ∑
(c,i)∈Pe

XI
lci − Q̃I

le

⎞⎠ (B.81)

V R
tr = V R

τr +

t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
R
lcir − Q̃R

lr

⎞⎠ (B.82)

V D
td = V D

τd +
t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
D
lcid − Q̃D

ld

⎞⎠ (B.83)

Note that V C
τc, V

I
τe, V

R
τr, and V D

τd are given values and no decision variables.
The objective function could still be more compact, but for a better reading
the Pτ , Rτ , Cτ , C

V
τ , and CS

τ are kept.

Max Pτ = Rτ − Cτ − CV
τ − CS

τ (B.84)

Rτ =

τ+τ̄−1∑
t=τ

(∑
e

rIteQ̃
I
te +

∑
r

rRtrQ̃
R
tr

)(
zt−τ +

zτ̄

τ̄(1− z)

)
(B.85)

Cτ =

τ+τ̄−1∑
t=τ

(∑
c

(
cAtcQ̃

C
tc + cJc

(
XI

t,c,1 +
∑
r

XR
t,c,1,r +

∑
d

XD
t,c,1,d

))
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+
∑
d

cDtdQ̃
D
td

)
·
(
zt−τ +

zτ̄

τ̄(1− z)

)
(B.86)

CV
τ =

τ+τ̄−1∑
t=τ

[∑
c

hC
c

(
V C
τc +

t−1∑
l=τ

(
Q̃C

lc −XI
l,c,1 −

∑
r

XR
l,c,1,r −

∑
d

XD
l,c,1,d

)

+Q̃C
tc −

1

2

(
XI

t,c,1 +
∑
r

XR
t,c,1,r +

∑
d

XD
t,c,1,d

))

+
∑
e

hI
e

⎛⎝V I
τe +

t−1∑
l=τ

⎛⎝ ∑
(c,i)∈Pe

XI
lci − Q̃I

le

⎞⎠+
1

2

∑
(c,i)∈Pe

XI
tci

⎞⎠
+
∑
r

hR
r

⎛⎝V R
τr +

t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
R
lcir − Q̃R

lr

⎞⎠
+
1

2

∑
c

Īc∑
i=1

wciX
R
tcir

⎞⎠
+
∑
d

hD
d

⎛⎝V D
τd +

t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
D
lcid − Q̃D

ld

⎞⎠
+
1

2

∑
c

Īc∑
i=1

wciX
D
tcid

⎞⎠⎤⎦ zt−τ

+

[∑
c

hC
c

(
V C
τc +

τ+τ̄−1∑
t=τ

(
Q̃C

tc −XI
t,c,1 −

∑
r

XR
t,c,1,r −

∑
d

XD
t,c,1,d

))

+
∑
e

hI
e

⎛⎝V I
τe +

τ+τ̄−1∑
t=τ

⎛⎝ ∑
(c,i)∈Pe

XI
tci − Q̃I

te

⎞⎠⎞⎠
+
∑
r

hR
r

⎛⎝V R
τr +

τ+τ̄−1∑
t=τ

⎛⎝∑
c

Īc∑
i=1

wciX
R
tcir − Q̃R

tr

⎞⎠⎞⎠
+
∑
d

hD
d

⎛⎝V D
τd +

τ+τ̄−1∑
t=τ

⎛⎝∑
c

Īc∑
i=1

wciX
D
tcid − Q̃D

td

⎞⎠⎞⎠⎤⎦ zτ̄

1− z

(B.87)
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CS
τ =

τ+τ̄−1∑
t=τ

(
σC

∑
c

cAtc

(
QC

tc − Q̃C
tc

)
+ σI

∑
e

rIte

(
DI

te − Q̃I
te

)
+σR

∑
r

rRtr

(
DR

tr − Q̃R
tr

)
+ σD

∑
d

cDtd

(
QD

td − Q̃D
td

))
zt−τ

(B.88)⌈
βcQ

C
tc

⌉ ≤ Q̃C
tc ≤ QC

tc ∀ t ∈ T̃ , c (B.89)

Q̃I
te ≤ DI

te ∀ t ∈ T̃ , e (B.90)

Q̃R
tr ≤ DR

tr ∀ t ∈ T̃ , r (B.91)

Q̃D
td ≤ QD

td ∀ t ∈ T̃ , d (B.92)

XI
t,c,1 +

∑
r

XR
t,c,1,r +

∑
d

XD
t,c,1,d = XI

tci +
∑
r

XR
tcir +

∑
d

XD
tcid

∀ t ∈ T̃ , c, i ∈ {2, . . . , Īc} (B.93)

∑
d

XD
tcid ≥ ζciιci

(
XI

t,c,1 +
∑
r

XR
t,c,1,r +

∑
d

XD
t,c,1,d

)
∀ t ∈ T̃ , c, i ∈ {1, . . . , Īc} (B.94)

XI
tci ≤ (1− ζci)(1− ηci)(1− θci)

(
XI

t,c,1 +
∑
r

XR
t,c,1,r +

∑
d

XD
t,c,1,d

)
∀ t ∈ T̃ , (c, i) ∈

⋃
e

Pe (B.95)

ωr

t∑
l=t−τr

∑
c

Īc∑
i=1

wciX
R
lcir ≤

∑
c

Īc∑
i=1

wciπcir

t∑
l=t−τr

XR
lcir ∀ t ∈ T̃ , r (B.96)

V 1 ≥
∑
c

νCc

(
V C
τc +

t−1∑
l=τ

(
Q̃C

lc −XI
l,c,1 −

∑
r

XR
l,c,1,r −

∑
d

XD
l,c,1,d

)
+ Q̃C

τc

)
∀ t ∈ T̃ (B.97)
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V 2 ≥
∑
e

νIe

⎛⎝V I
τe +

t−1∑
l=τ

⎛⎝ ∑
(c,i)∈Pe

XI
lci − Q̃I

le

⎞⎠+
∑

(c,i)∈Pe

XI
tci

⎞⎠
+
∑
r

νRr

⎛⎝V R
τr +

t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
R
lcir − Q̃R

lr

⎞⎠+
∑
c

Īc∑
i=1

wciX
R
tcir

⎞⎠
+
∑
d

νDd

⎛⎝V D
τd +

t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
D
lcid − Q̃D

ld

⎞⎠+
∑
c

Īc∑
i=1

wciX
D
tcid

⎞⎠
∀ t ∈ T̃ (B.98)

V 3 ≥
∑

e∈{e|Pe⊆H}
νIe

⎛⎝V I
τe +

t−1∑
l=τ

⎛⎝ ∑
(c,i)∈Pe

XI
lci − Q̃I

le

⎞⎠+
∑

(c,i)∈Pe

XI
tci

⎞⎠
+ νD2

⎛⎝V D
τ,2 +

t−1∑
l=τ

⎛⎝∑
c

Īc∑
i=1

wciX
D
l,c,i,2 − Q̃D

l,2

⎞⎠+
∑
c

Īc∑
i=1

wciX
D
t,c,i,2

⎞⎠
∀ t ∈ T̃ (B.99)

XI
tci = 0 ∀ t, (c, i) �∈

⋃
e

Pe (B.100)

XR
tcir =0 ∀ t, (c, i) ∈ H, r (B.101)

XD
tcid =0 ∀ t, (c, i) ∈ H, d ∈ {1} (B.102)

All decision variables are non-negative.

Q̃C
τc, X

I
τci, X

R
τcir, X

D
τcid, Q̃

I
τe ∈ Z

∗ ∀ c, i ∈ {1, . . . , Īc}, r, d, e (B.103)
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B.9 Optimal values XI
tci, X

R
tcir, and XD

tcid
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B.10 Optimal values XI
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R
tcir, and XD

tcid (20 periods)

Table B.2 Optimal solutions of XI
tci

XI
tci

period t

c i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20

1

A 10 8 12 3 13 36 11 11 11 10 6 12 12 11 11 13 12 12 11 12
B 10 3 12 3 13 36 11 11 11 10 6 12 12 11 11 13 12 12 11 12
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E 23 18 26 6 28 80 24 24 24 22 13 26 27 24 25 28 26 26 24 26
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

2

A 67 86 60 90 82 51 62 72 70 72 67 73 65 61 67 79 61 66 63 66
B 85 86 60 90 82 51 62 72 70 72 67 73 65 61 67 79 61 66 63 66
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E 190 190 133 198 181 112 136 160 155 158 147 162 144 135 148 174 135 145 140 145
F . . . . . . . . . . . . . . . . . . . .
G 190 190 133 198 181 112 136 160 155 157 147 162 144 135 148 174 135 145 140 145
H . . . . . . . . . . . . . . . . . . . .

3

A . . 21 13 9 10 7 7 7 6 7 . 13 8 . . 17 10 6 6
B . 8 28 13 9 10 7 7 7 6 7 . 13 8 . . 17 10 6 6
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . 17 62 29 19 23 15 15 15 9 11 . 29 17 . . 37 22 14 14
H . . . . . . . . . . . . . . . . . . . .

Dots denote zero values.
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Table B.3 Optimal solutions of XD
tcid

XD
tcid

period t

d c i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20

re
g
u
la
r
w
a
st
e
(d

=
1
)

1

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . 21 . . . . . . . 1 . . . . . 1
H . . . . . . . . . . . . . . . . . . . .

2

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . 2 . . . . . . . . . . . . . 2
H . . . . . . . . . . . . . . . . . . . .

3

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . 1 1 1 1 1 1 1 1 1 1 . 1 1 . . 1 1 1 1
D . 1 1 1 1 1 1 1 1 1 1 . 1 1 . . 1 1 1 1
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . 1 . . . . . . . . . . . . . 1
H . . . . . . . . . . . . . . . . . . . .

h
a
za

rd
o
u
s
w
a
st
e
(d

=
2
)

1

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H 24 19 27 7 29 81 25 25 25 23 14 27 28 25 26 29 27 27 25 27

2

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

3

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

Dots denote zero values.
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Table B.4 Optimal solutions of XR
tcir

XR
tcir

period t

r c i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20

st
ee
l
(r

=
1
)

1

A 14 11 8 3 16 . . . . . 6 . . . . . . 15 14 15
B 14 16 3 4 14 . . . . . 8 15 . . . . . 15 11 15
C 23 18 26 6 . . 24 2 . . . . 1 . . . 4 26 24 26
D 23 18 26 6 1 . 24 . . . 11 . 2 . . . . 26 24 26
E 1 1 1 . . . . 1 1 1 1 1 1 . . . . . . .
F 24 19 27 6 16 . 17 25 25 23 14 27 28 25 23 29 27 27 25 27
G . . 2 . 1 . 1 . 1 . . 3 2 3 1 3 2 1 1 1
H . . . . . . . . . . . . . . . . . . . .

2

A 125 106 75 16 . . 5 90 . . 82 91 . . 2 . . 81 79 81
B 107 106 75 16 . . 5 90 . . . 17 . 43 2 . 11 81 79 81
C 192 192 135 7 105 . 138 . . . 149 . 3 33 . 176 . 147 142 147
D 192 190 135 52 181 5 138 . . . 149 . . 22 89 94 . 147 142 147
E 2 2 2 . 2 . 1 2 2 . 1 2 2 . 1 . . 2 . .
F 192 192 135 198 183 1 138 162 157 160 149 164 145 137 146 176 137 141 129 147
G . . . . . . 1 2 2 3 . . 2 . 2 . 2 . . .
H 10 11 . 1 . . . 8 7 . 8 . . . . . . . . .

3

A . 18 42 16 . . . . . . . . . . . . . 13 9 9
B . 10 5 16 10 . 9 9 . . 10 . . . . . . 13 9 9
C . 17 44 . . 4 7 . . . 16 . 1 17 . . . 22 14 14
D . 17 61 . . . 15 . . . 14 . 1 . . . . 22 6 14
E . 18 63 30 . 3 1 16 16 14 . . 15 13 . . 33 . 4 10
F . 18 63 27 20 . 14 16 16 14 17 . 30 18 . . 38 16 15 15
G . . . 1 1 . . . . 1 . . . . . . . . . .
H . 1 . 30 2 . . . . . . . . . . . . . . 1

m
et
a
l
(r

=
2
)

1

A . . . 1 . . . . . . . . . . . . . . . .
B . . . . 2 . . . . . . . . . . . . . . .
C . . . . 28 . . . . . 2 . . . . . . . . .
D . . . . 3 . . . . . . . . . . . . . . .
E . . . 1 1 1 1 . . . . . . 1 1 1 1 1 1 1
F . . . 1 13 81 8 . . . . . . . 3 . . . . .
G 24 19 25 7 28 60 24 25 24 23 14 24 26 21 25 26 25 26 24 25
H . . . . . . . . . . . . . . . . . . . .

2

A . . . 94 1 . . . . . . . . . . . . . . .
B . . . 94 32 . . . . . 82 . . . . . . . . .
C . . . 193 75 . . . . . . . . . . . . . . .
D . 2 . 148 . . . . . . . . . . . . . . . .
E . . . 2 . 2 1 . . 2 1 . . 2 1 2 2 . 2 2
F . . . 2 . 113 . . . . . . 1 . 4 . . 6 13 .
G 2 2 2 2 2 . 1 . . . 2 2 . 2 . 2 . 2 2 .
H 182 181 135 199 183 114 138 154 150 160 141 164 146 137 150 176 137 147 142 147

3

A . . . 1 2 . . . . . . . . . . . . . . .
B . . . 1 . . . . . . . . . . . . . . . .
C . . . 29 . . . . . . . . . . . . . . . .
D . . . 29 . . . . . . . . . . . . . . . .
E . . . . 20 21 15 . . . 17 . 15 5 . . 5 23 11 5
F . . . 3 . 24 2 . . . . . . . . . . 7 . .
G . 1 1 . . . 1 1 1 4 6 . 1 1 . . 1 1 1 .
H . 17 63 . 18 24 16 16 16 14 17 . 30 18 . . 38 23 15 14
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Table B.5 Optimal solutions of XR
tcir (cont.)

XR
tcir

period t

r c i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20

ru
b
b
er

(r
=

3
)

1

A . . 7 . . 45 14 14 14 13 2 15 16 14 15 16 15 . . .
B . . 12 . . 45 14 14 14 13 . . 16 14 15 16 15 . 3 .
C . . . . . 80 . 22 24 22 11 26 26 24 25 28 22 . . .
D . . . . 24 80 . 24 24 22 2 26 25 24 25 28 26 . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

2

A . . . . 100 63 71 . 87 88 . . 81 76 81 97 76 . . .
B . . . . 69 63 71 . 87 88 . 74 81 33 81 97 65 . . .
C . . . . 3 114 . 162 157 160 . 164 143 104 150 . 137 . . .
D . . . . 2 109 . 162 157 160 . 164 146 115 61 82 137 . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

3

A . . . . 9 14 9 9 9 8 10 . 17 10 . . 21 . . .
B . . 30 . 1 14 . . 9 8 . . 17 10 . . 21 . . .
C . . 18 . 19 19 8 15 15 13 . . 28 . . . 37 . . .
D . . 1 . 19 23 . 15 15 13 2 . 28 17 . . 37 . 8 .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

p
la
st
ic
s
(r

=
4
)

1

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

2

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .

3

A . . . . . . . . . . . . . . . . . . . .
B . . . . . . . . . . . . . . . . . . . .
C . . . . . . . . . . . . . . . . . . . .
D . . . . . . . . . . . . . . . . . . . .
E . . . . . . . . . . . . . . . . . . . .
F . . . . . . . . . . . . . . . . . . . .
G . . . . . . . . . . . . . . . . . . . .
H . . . . . . . . . . . . . . . . . . . .
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B.11 Potential for profit increasing

Two further ideas to evaluate the gained solution with the rolling planning
are discussed in the sequel. Firstly, we build a model for the optimisation
of all 24 periods together. Thereby, for the periods one through 20 the in-
tegrality constraints must apply. Furthermore, only the given contracts for
the first five periods are relevant while for the remaining periods no contract
exists and we assume that we can acquire and distribute arbitrary numbers
of cores. The disposal constraints stay identical to the rolling horizon plan-
ning model. In addition, the inventory at the end of period 24 is limited
by the inventory of the result of the rolling horizon planning and the lower
acquisition limits of 25, 20, and 15 units of core 1, 2, and 3, respectively,
are included, to keep it comparable. Solving this model leads to a profit
of 380,475.06e for the periods one through 20. (The profit for all 24 pe-
riods is 703,204.93e.) The development of the revenues, cost, and profits
is displayed in Fig. B.4. We see that the revenues are relatively constant
compared to the cost. The cost has a high impact on the profit, such that
it is very volatile, too.

In the rolling horizon planning we added a random influence of plus
minus 10% to simulate a suboptimal contracting and time varying data.
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Fig. B.4 Profit development without further contracts
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Fig. B.5 Profit development with further contracts

This should be considered here, too. Therefore, we take the solution from
above and the values for Q̃C

6..24,c, Q̃
I
6..24,e, and Q̃R

6..24,r are used to create
contracts as with the pre-planning. So we extend the above model by the
contracts. Solving this model leads to a profit of 114,801.58e for periods
one through 20 and 407,466.62e for all 24 periods. Interestingly, the 20
period profit is rather low. But a glance at Fig. B.5 shows the reason. The
cost and profit are highly volatile, which is a similar development compared
to the solution above. The volatile cost is mainly driven by the acquisition
cost and here especially of core 2. This illustrates Fig. B.6.

To compare this result with the rolling horizon planning (the one with the
increased penalty factor) and its ex-post solution we take the profit over 20
and all 24 periods as well. The profit of the ex-post solution is 318,885.34e
and 329,828.34e for 20 and 24 periods, respectively. For the rolling horizon
planning a profit of 280,246.93e as well as 288,318.56e results.

Comparing the profit of the contracting using total planning with the
ex-post solution and the rolling horizon planning shows a gap of 407466.62

329828.34 −
1 = 23.54% and 407466.62

288318.56 − 1 = 41.33%, respectively. Especially, the ex-
post solution shows a relative moderate gap. However, the rolling horizon
planning shows a rather steady development of revenues, cost, and profit
(see Fig. B.7). This development is usually preferred (this is one aim of
the rolling horizon planning we have in this work) especially when a steady
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this example set we can derive that a further (significant) increase of profit
is possible, but maybe only with a volatile solution.

availability on cores and a steady demand of items and material exists. From



Appendix C

Appendix to Chapter 4

C.1 Linear and star core configuration

The two extreme cases of core configurations in terms of complexity are
compared. The first is the linear structure, which can be seen as the lower
bound, and the second is the star structure, which represents the upper
bound with regard to the number of modules. A linear core structure is de-
picted in Fig. C.1. The core is limited to four items to keep the illustration
straightforward. The corresponding connectivity matrix is also included in
the figure. The geometric and technical constraints (as illustrated in the fig-
ure) are “AB not D” and “BC not D”. These prevent any other disassembly
sequence than taking off A, then B, and lastly C (or D, which is the same).
The corresponding disassembly state graph and the and/or graph are de-
picted in Fig. C.2. The disassembly state graph consists of four nodes, i.e.,

Extended connection graph

A B

CD

Connectivity matrix

A B C D

A 0 1 0 0
B 1 0 2 0
C 0 2 0 3
D 0 0 3 0

Fig. C.1 Extended connection graph of linear core structure

C. Ullerich, Advanced Disassembly Planning,
DOI 10.1007/978-3-658-03118-3, © Springer Fachmedien Wiesbaden 2014
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Disassembly state graph

(ABCD)

A(BCD)

A.B(CD)

A.B.C.D

And/Or graph

ABCD

BCD

CD

Fig. C.2 Disassembly state and and/or graph of linear core structure

Extended connection graph

A B

C

D

Connectivity matrix

A B C D

A 0 0 0 1
B 0 0 0 2
C 0 0 0 3
D 1 2 3 0

Fig. C.3 Extended connection graph of star core structure

only one node per level. In total three modules exist, which form the and/or
graph.

On the contrary, the star structured core without any geometric or tech-
nical constraints—connection graph and connectivity matrix can be found
in Fig. C.3—results in a larger disassembly state graph. This graph is de-
picted in Fig. C.4. The graph consists of 23 = 8 nodes, which is the upper
limit for three connections. The corresponding and/or graph has the same
size (neglecting the node representing the completely disassembled core),
because there exists no connection in the core which joins two modules.
Hence, as soon as more than one module per connection cutting results, an
and-relationship is included in the and/or graph and the number of nodes
becomes smaller than the ones of the disassembly state graph. With these
two extreme examples regarding the number of nodes we see that in practice
the complexity is somewhere in between these two.
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Disassembly state graph

(ABCD)

A(BCD) B(ACD) C(ABD)

A.B(CD) A.C(BD) B.C(AD)

A.B.C.D

And/Or graph

ABCD

BCD ACD ABD

CD BD AD

Fig. C.4 Disassembly state and and/or graph of star core structure
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C.2 Number of edges of core graph

The basis for determining the number of edges of a core graph are the
number of items n, the usage categories u, and the property that higher
usage categories can always be used for all lower usage categories. This
means that a functioning item can always be recycled and disposed of,
whereas a recyclable item can always be disposed of. Obviously, the lowest
category (i.e., the disposal) marks the end, because these items can only be
disposed of. There exists no lower category. We assume, that no matter how
many usage categories u exist, u−1 categories have lower categories. For the
illustration we focus on the node ABCD of the core graph in Fig. 4.10 on
page 197. This node contains two entries with the lowest category marked
by the grey underlined letter A and C. Since two entries have the lowest
category only arrows for the remaining entries emerge from this node, i.e.,
two. This means that there exist nodes with n, n− 1, n− 2, . . . , and n− n
lowest category entries, i.e., n− k for k ∈ {0, . . . , n}, which corresponds to
k emerging edges at the same time.

The number of nodes for each number of edges is determined as follows.
A node with k outgoing edges contains n− k entries with a grey underlined
letter. These n− k entries can be placed arbitrarily among the n entries as
long as always n−k of the n exist. This results in

(
n

n−k

)
possibilities. For each

of these possibilities the remaining k entries can be filled with an arbitrary
mix of the remaining categories, i.e., u− 1. This equals a permutation with
repetition of u− 1 elements on k positions. Hence, (u− 1)k possibilities per
node of the

(
n

n−k

)
exist. This makes

(
n

n−k

)
(u − 1)k nodes with k emerging

edges. Thus, the number of edges from these nodes is
(

n
n−k

)
(u−1)kk. Lastly,

the sum over all edge numbers k delivers the number of edges of the core
graph with

n∑
k=0

(
n

n− k

)
(u− 1)k k . (C.1)

The transformation into a more compact term is as follows.

n∑
k=0

(
n

n− k

)
(u− 1)k k

=
n∑

k=0

n!

(n− k)!k!
(u− 1)k k
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=

n∑
k=1

n!

(n− k)!k!
(u− 1)k k

=
n∑

k=1

n!

(n− k)!(k − 1)!
(u− 1)k

=

n∑
k=1

n(n− 1)!

(n− k)!(k − 1)!
(u− 1)k−1(u− 1)

= (u− 1)n
n∑

k=1

(n− 1)!

(n− k)!(k − 1)!
(u− 1)k−1

=(u− 1)n

n∑
k=1

(n− 1)!

((n− 1)− (k − 1))!(k − 1)!
(u− 1)k−1

=(u− 1)n

n−1∑
k=0

(n− 1)!

((n− 1)− k)!k!
(u− 1)k

=(u− 1)n

n−1∑
k=0

(
n− 1

k

)
(u− 1)k 1n−1−k

The binomial theorem (a + b)n =
∑n

k=0

(
n
k

)
an−k bk helps to transform the

sum when substituting a with 1 and b with u − 1 and using n − 1 instead
of n.1

=(u− 1)n(u− 1 + 1)n−1

=(u− 1)nun−1 (C.2)

The final step is to replace n by Īc, to use the notation of the model, i.e.,
the number of edges for a core c is

(u− 1)Īc u
Īc−1 . (C.3)

1 Cf. Gellert et al. (1965): Kleine Enzyklopdie – Mathematik , p. 45.
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C.3 Compact flexible model formulation

The transformation of the model in Sect. 4.2.3 is analogue to the one of
the basic model in Sect. 3.1.2 to the compact basic model in appendix B.2.
All variables completely explained by other variables are substituted, i.e.,
P , R, C, QC

c , Q
I
e, Q

R
r , and QD

d , as in the basic model. In addition, QM
f for

modules is substituted, too.

Maximise
∑
e

rIe

⎛⎝ ∑
(c,i)∈Pe

XI
ci

⎞⎠+
∑
f

rMf

⎛⎝ ∑
(c,m)∈Rf

Y M
cm

⎞⎠
+
∑
r

rRr

⎛⎝∑
c

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠⎞⎠
−
∑
c

(
cAc + cJc,1

)(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

+

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)⎞⎠
+
∑
c

Mc∑
m=1

cJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)

−
∑
d

cDd

⎛⎝∑
c

Īc∑
i=1

wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠⎞⎠
=
∑
e

∑
(c,i)∈Pe

rIe X
I
ci +

∑
f

∑
(c,m)∈Rf

rMf Y M
cm

+
∑
c

⎡⎣∑
r

Īc∑
i=1

rRr wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠
− (

cAc + cJc,1
)(

XI
c,1 +

∑
r

XR
c,1,r +

∑
d

XD
c,1,d

+

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)⎞⎠
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+

Mc∑
m=1

cJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)

−
∑
d

Īc∑
i=1

cDd wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠⎤⎦ (C.4)

Item and module flow constraints

XI
c,1 +

∑
r

XR
c,1,r +

∑
d

XD
c,1,d +

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)

= XI
ci +

∑
r

XR
cir +

∑
d

XD
cid +

Mc∑
m=1

δcmi

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c, i ∈ {2, . . . , Īc} (C.5)

XI
ci +

∑
r

XR
cir +

∑
d

XD
cid ≥

Mc∑
m=1

αcmi

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c, i ∈ {1, . . . , Īc} (C.6)

XI
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (C.7)

Y M
cm = 0 ∀ (c,m) /∈

⋃
f

Rf (C.8)

Condition constraints
Core graph:

V C
c,1 ≤ ρ̃c,1

(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

+

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)⎞⎠
+

∑
ṽ∈{ṽ|ṽ>1,EC

c,ṽ,1=1}
ZC
c,ṽ,1 ∀ c (C.9)
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∑
ṽ∈{ṽ|ṽ<v,EC

cvṽ=1}
ZC
cvṽ + V C

cv = ρ̃cv

(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

+

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)⎞⎠
+

∑
ṽ∈{ṽ|ṽ>v,EC

cṽv=1}
ZC
cṽv ∀ c, v ∈ {2, . . . , 3Īc}

(C.10)∑
v

V C
cv =

(
XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

+

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)⎞⎠ ∀ c (C.11)

ZC
cvṽ = 0 ∀ c, v, ṽ ∈ {ṽ ∣∣EC

cvṽ = 0
}

(C.12)

Distribution graph:∑
w̃∈{w̃|ED

cww̃=1}
ZI
cww̃ + Y M

c,LA
cw

=
∑

v∈LI
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZI
cw̃w

+
∑

w̃∈{w̃|ED
cw̃w>1}

ZI
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw > 0
}

(C.13)

∑
w̃∈{w̃|ED

cww̃=1}
ZI
cww̃ =

∑
v∈LI

cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZI
cw̃w

+
∑

w̃∈{w̃|ED
cw̃w>1}

ZI
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw = 0
}

(C.14)

XI
c,LA

cw
+XA

c,LA
cw

=
∑

v∈LI
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZI
cw̃w+

∑
w̃∈{w̃|ED

cw̃w>1}
ZI
c,w̃,ED

cw̃w

∀ c, w ∈
{
2Īc − Īc, . . . , 2

Īc − 1
}

(C.15)
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XA
ci = 0 ∀ (c, i) /∈

⋃
e

Pe (C.16)

Recycling graph:∑
w̃∈{w̃|ED

cww̃=1}
ZR
cww̃ +

∑
r

Y R
c,LA

cw,r =
∑

v∈LR
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZR
cw̃w

+
∑

w̃∈{w̃|ED
cw̃w>1}

ZR
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw > 0
}

(C.17)

∑
w̃∈{w̃|ED

cww̃=1}
ZR
cww̃ =

∑
v∈LR

cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZR
cw̃w

+
∑

w̃∈{w̃|ED
cw̃w>1}

ZR
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw = 0
}

(C.18)

∑
r

XR
c,LA

cw,r +
∑
d

XD
c,LA

cw,d − X̃D
c,LA

cw
−XA

c,LA
cw

=
∑

v∈LR
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZR
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZR
c,w̃,ED

cw̃w

∀ c, w ∈
{
2Īc − Īc, . . . , 2

Īc − 1
}

(C.19)

Disposal graph:∑
w̃∈{w̃|ED

cww̃=1}
ZD
cww̃ +

∑
d

Y D
c,LA

cw,d =
∑

v∈LD
cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZD
cw̃w

+
∑

w̃∈{w̃|ED
cw̃w>1}

ZD
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw > 0
}

(C.20)
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w̃∈{w̃|ED

cww̃=1}
ZD
cww̃ =

∑
v∈LD

cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZD
cw̃w

+
∑

w̃∈{w̃|ED
cw̃w>1}

ZD
c,w̃,ED

cw̃w

∀ c, w ∈
{
w
∣∣∣w ∈

{
1, . . . , 2Īc − Īc − 1

}
, LA

cw = 0
}

(C.21)

X̃D
c,LA

cw
=

∑
v∈LD

cw

V C
cv +

∑
w̃∈{w̃|ED

cw̃w=1}
ZD
cw̃w +

∑
w̃∈{w̃|ED

cw̃w>1}
ZD
c,w̃,ED

cw̃w

∀ c, w ∈
{
2Īc − Īc, . . . , 2

Īc − 1
}

(C.22)

ZI
cww̃ = ZR

cww̃ = ZD
cww̃ = 0 ∀ c, w, w̃ ∈ {w̃ ∣∣ED

cww̃ �= 1
}

(C.23)

Damaging:

(1− θci)X
A
ci ≥ θci X

I
ci ∀ (c, i) ∈

⋃
e

Pe (C.24)

∑
d

XD
cid ≥ X̃D

ci ∀ c, i (C.25)

Purity constraints

ωr

⎛⎝∑
c

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠⎞⎠
≤
∑
c

Īc∑
i=1

πcirwci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ∀ r (C.26)

XR
cir = 0 ∀ (c, i) ∈ H, r (C.27)

XD
cid = 0 ∀ (c, i) ∈ H, d ∈ {1} (C.28)

Y R
cmr = 0 ∀ (c,m) ∈ {(c,m)|δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}

}
, r
(C.29)

Y D
cmd = 0 ∀ (c,m) ∈ {(c,m)|δcmi = 1, (c, i) ∈ H,m ∈ {1, . . . ,M c}

}
, d ∈ {1}
(C.30)
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Limits constraints

QC
c ≤ XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d

+

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
≤ QC

c ∀ c (C.31)

QI
e ≤

∑
(c,i)∈Pe

XI
ci ≤ DI

e ∀ e (C.32)

QM
f ≤

∑
(c,m)∈Rf

Y M
cm ≤ DM

f ∀ f (C.33)

QR
r ≤

∑
c

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ≤ DR
r ∀ r (C.34)

QD
d ≤

∑
c

Īc∑
i=1

wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠ ≤ QD
d ∀ d (C.35)

∑
c

tJc,1

⎛⎝XI
c,1 +

∑
r

XR
c,1,r +

∑
d

XD
c,1,d +

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr

+
∑
d

Y D
cmd

))
−
∑
c

Mc∑
m=1

tJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
≤ L̄ (C.36)

XI
ci, X

A
ci, X̃

D
ci , X

R
cir, X

D
cid, Y

M
cm, Y R

cmr, Y
D
cmd ∈ Z

∗

∀ c, i ∈ {1, . . . , Īc},m ∈ {1, . . . ,M c}, r, d (C.37)

V C
cv , Z

C
cvṽ, Z

I
cww̃, Z

R
cww̃, Z

D
cww̃ ≥ 0

∀ c, v& ṽ ∈ {1, . . . , 3Īc}, w& w̃ ∈ {1, . . . , 2Īc − 1} (C.38)

Once the solution with the remaining decision variables is gained, the values
of the other variables can be easily determined with the following equations.
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QC
c = XI

c,1 +
∑
r

XR
c,1,r +

∑
d

XD
c,1,d +

Mc∑
m=1

δc,m,1

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
∀ c (C.39)

QR
r =

∑
c

Īc∑
i=1

wci

⎛⎝XR
cir +

Mc∑
m=1

δcmiY
R
cmr

⎞⎠ ∀ r (C.40)

QD
d =

∑
c

Īc∑
i=1

wci

⎛⎝XD
cid +

Mc∑
m=1

δcmiY
D
cmd

⎞⎠ ∀ d (C.41)

QI
e =

∑
(c,i)∈Pe

XI
ci ∀ e (C.42)

QM
f =

∑
(c,m)∈Rf

Y M
cm ∀ f (C.43)

R =
∑
e

rIeQ
I
e +

∑
f

rMf QM
f +

∑
r

rRr Q
R
r (C.44)

C =
∑
c

(
cAc + cJc,1

)
QC

c −
∑
c

Mc∑
m=1

cJcm

(
Y M
cm +

∑
r

Y R
cmr +

∑
d

Y D
cmd

)
+
∑
d

cDd Q
D
d (C.45)

P = R− C (C.46)

In this model we not only have integer variables. The variables in Eq. (C.38)
are real valued variables. For every node of the core graph of each core c one
variable V C

cv exists, i.e.,
∑

c 3
Īc . In addition, all edges of the core graph are

represented by a variable ZC
cvṽ, too. Depending on the number of items per

core Īc a core graph has 2 ·3Īc−1Īc edges (see page 193). For all cores we get
2
3

∑
c 3

Īc Īc edges. The distribution, recycling, and disposal graph have each
1
2

(
3Īc − 2Īc+1 + 1

)
edges per core (see Eq. (4.36) on page 186). Note that

always two edges are treated as one so that the number of decision variables
is half the amount of the edges drawn in Fig. 4.8 or 4.9. For all three graphs
and the number of cores we get 3

2

∑
c

(
3Īc − 2Īc+1 + 1

)
. Hence, all together

the model has∑
c

3Īc +
2

3

∑
c

3Īc Īc +
3

2

∑
c

(
3Īc − 2Īc+1 + 1

)
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=
∑
c

(
3Īc +

2

3
3Īc Īc +

3

2
3Īc − 3

2
2Īc+1 +

3

2

)
=
∑
c

((
2

3
Īc +

5

2

)
3Īc − 3 · 2Īc

)
+

3

2
c (C.47)

real valued variables. Note that the term α · c is the short form for α
∑

c 1.
The number of integer variables is determined in a similar way. The

relevant variables are listed in Eq. (C.37). These are XI
ci and XA

ci. Because
of Eqs. (C.7) and (C.16), they can have a value other than zero only for
the number of elements of the demand position sets. This makes 2 |⋃e Pe|
number of variables. The same applies to the variable Y M

cm, only that the
demand for modules is relevant (see Eq. (C.8)), i.e.,

∣∣⋃
f Rf

∣∣. The variable

X̃D
ci appears in the model for each core Īc times so that in total

∑
c Īc

variables exist. In general, we find
∑

r

∑
c Īc (in short: r

∑
c Īc) variables

XR
cir in the model. But, Eq. (C.27) states that recycling for hazardous items

is not an option. Thus, the number of hazardous items for each recycling box
can be subtracted. The same applies to the disposal with the exception that
one disposal bin d = 2 is for hazardous items (see Eq. (C.28)). This makes
(r+d)

∑
c Īc−r|H|− (d−1)|H| variables XR

cir and XD
cid. The variables Y

R
cmr

and Y D
cmd have the indices c, m, and r or d which implies that (r+d)

∑
c M c

variables exist in the model. Looking at the Eqs. (C.29) and (C.30) indicates
that in the case of hazardous items the modules containing such items must
not be recycled or disposed of as non-hazardous waste. But, depending on
the given data even if an item is hazardous it does not necessarily mean
that more than just one module is affected. At least the module m = 1
(complete core) is always affected, because this has to exist always in order
to determine the disassembly cost and times. But this is just one variable
of many. Therefore, we neglect the possible reducing by hazardous items
and use the number of variables as upper bound. Summarising the integer
variables leads to at most

2

∣∣∣∣∣⋃
e

Pe

∣∣∣∣∣+
∣∣∣∣∣∣
⋃
f

Rf

∣∣∣∣∣∣+
∑
c

Īc + (r + d)
∑
c

Īc − (r + d)|H|+ |H|

+ (r + d)
∑
c

M c

=2

∣∣∣∣∣⋃
e

Pe

∣∣∣∣∣+
∣∣∣∣∣∣
⋃
f

Rf

∣∣∣∣∣∣+ (r + d+ 1)
∑
c

Īc + (r + d)
∑
c

M c − (r + d− 1)|H|
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Table C.1 Upper bound of number of decision variables and constraints

real variables
∑

c

((
2
3
Īc +

5
2

)
3Īc − 3 · 2Īc

)
+ 3

2
c

integer variables 2
∣∣⋃

e Pe

∣∣+ ∣∣∣⋃f Rf

∣∣∣+ (r + d)
(∑

c

(
Īc +Mc

)− |H|)+∑
c Īc + |H|

constraints
∑

c

(
3Īc + 3 · 2Īc + 3 Īc

)
+

∣∣⋃
e Pe

∣∣− c+ 3 r + 2 (e+ f + d) + 1

=2

∣∣∣∣∣⋃
e

Pe

∣∣∣∣∣+
∣∣∣∣∣∣
⋃
f

Rf

∣∣∣∣∣∣+ (r + d)

(∑
c

(
Īc +M c

)− |H|
)

+
∑
c

Īc + |H|

(C.48)

integer variables in the model.
The number of constraints are

∑
c

(
Īc − 1

)
(C.5),

∑
c Īc (C.6),

∑
c 3

Īc

(C.9) and (C.10), c (C.11), 3
∑

c

(
2Īc − 1

)
(C.13)–(C.22), |⋃e Pe| (C.24),∑

c Īc (C.25), r (C.26), 2(c+ e+ f + r + d) (C.31)–(C.35), and one (C.36).
Put together to one formula, we get

∑
c

(
Īc − 1

)
+
∑
c

Īc +
∑
c

3Īc + c+ 3
∑
c

(
2Īc − 1

)
+

∣∣∣∣∣⋃
e

Pe

∣∣∣∣∣+∑
c

Īc

+ r + 2 (c+ e+ f + r + d) + 1

=
∑
c

3Īc + 3
∑
c

2Īc + 3
∑
c

Īc +

∣∣∣∣∣⋃
e

Pe

∣∣∣∣∣− c+ 3 r + 2 (e+ f + d) + 1

=
∑
c

(
3Īc + 3 · 2Īc + 3 Īc

)
+

∣∣∣∣∣⋃
e

Pe

∣∣∣∣∣− c+ 3 r + 2 (e+ f + d) + 1 (C.49)

constraints. The results are summarised in Table C.1.
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C.4 Data excerpt of core, distribution, recycling, and
disposal graph
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Table C.3 Excerpt of EC
cvṽ = 1

core c = 1, c = 2, and c = 3

from to from to from to from to from to from to from to from to from to

v ṽ v ṽ v ṽ v ṽ v ṽ v ṽ v ṽ v ṽ v ṽ

6561 6560 6556 6529 6550 6547 6545 6302 6539 5810 66 65 51 48 39 30 23 14

6561 6558 6556 6475 6550 6541 6545 5816 6539 4352 66 57 51 42 39 12 22 19

6561 6552 6556 6313 6550 6523 6545 4358 6538 6535 66 39 51 24 38 37 22 13

6561 6534 6556 5827 6550 6469 6544 6535 6538 6511 65 64 50 49 38 29 21 20

6561 6480 6556 4369 6550 6307 6544 6517 6538 6457 65 56 50 47 38 11 21 12

6561 6318 6555 6554 6550 5821 6544 6463 6538 6295 65 38 50 41 37 28 20 19

6561 5832 6555 6546 6550 4363 6544 6301 6538 5809 64 55 50 23 37 10 20 11

6561 4374 6555 6528 6549 6548 6544 5815 6538 4351 64 37 49 46 36 35 19 10

6560 6559 6555 6474 6549 6546 6544 4357 6537 6536 63 62 49 40 36 33 18 17

6560 6557 6555 6312 6549 6540 6543 6542 6537 6510 63 60 49 22 36 9 18 15

6560 6551 6555 5826 6549 6522 6543 6540 6537 6456 63 36 48 47 35 34 18 9

6560 6533 6555 4368 6549 6468 6543 6516 6537 6294 62 61 48 39 35 32 17 16

6560 6479 6554 6553 6549 6306 6543 6462 6537 5808 62 59 48 21 35 8 17 14

6560 6317 6554 6545 6549 5820 6543 6300 6537 4350 62 35 47 46 34 31 17 8

6560 5831 6554 6527 6549 4362 6543 5814 6536 6535 61 58 47 38 34 7 16 13

6560 4373 6554 6473 6548 6547 6543 4356 6536 6509 61 34 47 20 33 32 16 7

6559 6556 6554 6311 6548 6545 6542 6541 6536 6455 60 59 46 37 33 30 15 14

6559 6550 6554 5825 6548 6539 6542 6539 6536 6293 60 57 46 19 33 6 15 12

6559 6532 6554 4367 6548 6521 6542 6515 6536 5807 60 33 45 44 32 31 15 6

6559 6478 6553 6544 6548 6467 6542 6461 6536 4349 59 58 45 42 32 29 14 13

6559 6316 6553 6526 6548 6305 6542 6299 •
•
•

•
•
•

59 56 45 36 32 5 14 11

6559 5830 6553 6472 6548 5819 6542 5813 72 63 59 32 45 18 31 28 14 5

6559 4372 6553 6310 6548 4361 6542 4355 72 45 58 55 44 43 31 4 13 10

6558 6557 6553 5824 6547 6544 6541 6538 71 70 58 31 44 41 30 29 13 4

6558 6555 6553 4366 6547 6538 6541 6514 71 68 57 56 44 35 30 3 12 11

6558 6549 6552 6551 6547 6520 6541 6460 71 62 57 30 44 17 29 28 12 3

6558 6531 6552 6549 6547 6466 6541 6298 71 44 56 55 43 40 29 2 11 10

6558 6477 6552 6543 6547 6304 6541 5812 70 67 56 29 43 34 28 1 11 2

6558 6315 6552 6525 6547 5818 6541 4354 70 61 55 28 43 16 27 26 10 1

6558 5829 6552 6471 6547 4360 6540 6539 70 43 54 53 42 41 27 24 9 8

6558 4371 6552 6309 6546 6545 6540 6537 69 68 54 51 42 39 27 18 9 6

6557 6556 6552 5823 6546 6537 6540 6513 69 66 54 45 42 33 26 25 8 7

6557 6554 6552 4365 6546 6519 6540 6459 69 60 54 27 42 15 26 23 8 5

6557 6548 6551 6550 6546 6465 6540 6297 69 42 53 52 41 40 26 17 7 4

6557 6530 6551 6548 6546 6303 6540 5811 68 67 53 50 41 38 25 22 6 5

6557 6476 6551 6542 6546 5817 6540 4353 68 65 53 44 41 32 25 16 6 3

6557 6314 6551 6524 6546 4359 6539 6538 68 59 53 26 41 14 24 23 5 4

6557 5828 6551 6470 6545 6544 6539 6536 68 41 52 49 40 37 24 21 5 2

6557 4370 6551 6308 6545 6536 6539 6512 67 64 52 43 40 31 24 15 4 1

6556 6553 6551 5822 6545 6518 6539 6458 67 58 52 25 40 13 23 22 3 2

6556 6547 6551 4364 6545 6464 6539 6296 67 40 51 50 39 38 23 20 2 1
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Table C.4 Excerpt of ED
cww̃ ≥ 1

core c = 1, c = 2, and c = 3

from to value from to value from to value from to value from to value from to value

w w̃ ED
cww̃ w w̃ ED

cww̃ w w̃ ED
cww̃ w w̃ ED

cww̃ w w̃ ED
cww̃ w w̃ ED

cww̃

1 2 1 1 43 1 1 84 1 1 125 1 215 249 241 227 254 253

1 3 1 1 44 1 1 85 1 1 126 1 215 252 247 228 252 1

1 4 1 1 45 1 1 86 1 1 127 1 216 242 1 228 254 252

1 5 1 1 46 1 1 87 1 1 128 1 216 243 1 229 251 1

1 6 1 1 47 1 1 88 1 1 129 128 216 245 1 229 254 251

1 7 1 1 48 1 1 89 1 1 130 127 216 249 242 230 250 1

1 8 1 1 49 1 1 90 1 1 131 126 216 250 243 230 254 250

1 9 1 1 50 1 1 91 1 1 132 125 216 251 245 231 249 1

1 10 1 1 51 1 1 92 1 1 133 124 217 242 1 231 254 249

1 11 1 1 52 1 1 93 1 1 134 123 217 244 1 232 248 1

1 12 1 1 53 1 1 94 1 1 135 122 217 246 1 232 254 248

1 13 1 1 54 1 1 95 1 1 136 121 217 248 242 233 252 1

1 14 1 1 55 1 1 96 1 1 137 120 217 250 244 233 253 252

1 15 1 1 56 1 1 97 1 1 138 119 217 251 246 234 251 1

1 16 1 1 57 1 1 98 1 1 139 118 218 243 1 234 253 251

1 17 1 1 58 1 1 99 1 1 140 117 218 244 1 235 250 1

1 18 1 1 59 1 1 100 1 1 141 116 218 247 1 235 253 250

1 19 1 1 60 1 1 101 1 1 142 115 218 248 243 236 249 1

1 20 1 1 61 1 1 102 1 1 143 114 218 249 244 236 253 249

1 21 1 1 62 1 1 103 1 1 144 113 218 251 247 237 248 1

1 22 1 1 63 1 1 104 1 1 145 112 219 245 1 237 253 248

1 23 1 1 64 1 1 105 1 1 146 111 219 246 1 238 251 1

1 24 1 1 65 1 1 106 1 1 147 110 219 247 1 238 252 251

1 25 1 1 66 1 1 107 1 1 148 109 219 248 245 239 250 1

1 26 1 1 67 1 1 108 1 1 149 108 219 249 246 239 252 250

1 27 1 1 68 1 1 109 1 1 150 107 219 250 247 240 249 1

1 28 1 1 69 1 1 110 1 1 151 106 220 254 1 240 252 249

1 29 1 1 70 1 1 111 1 1 152 105 220 255 254 241 248 1

1 30 1 1 71 1 1 112 1 1 153 104 221 253 1 241 252 248

1 31 1 1 72 1 1 113 1 1 154 103 221 255 253 242 250 1

1 32 1 1 73 1 1 114 1 1 155 102 222 252 1 242 251 250

1 33 1 1 74 1 1 115 1 1 156 101 222 255 252 243 249 1

1 34 1 1 75 1 1 116 1 1 157 100 223 251 1 243 251 249

1 35 1 1 76 1 1 117 1 1 158 99 223 255 251 244 248 1

1 36 1 1 77 1 1 118 1 1 159 98 224 250 1 244 251 248

1 37 1 1 78 1 1 119 1 1 160 97 224 255 250 245 249 1

1 38 1 1 79 1 1 120 1 1 161 96 225 249 1 245 250 249

1 39 1 1 80 1 1 121 1 •
•
•

•
•
•

•
•
•

225 255 249 246 248 1

1 40 1 1 81 1 1 122 1 215 241 1 226 248 1 246 250 248

1 41 1 1 82 1 1 123 1 215 247 1 226 255 248 247 248 1

1 42 1 1 83 1 1 124 1 215 248 240 227 253 1 247 249 248
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Table C.8 Module/item mapping LA
cw

core c = 1, c = 2, and c = 3

w LA
cw w LA

cw w LA
cw w LA

cw w LA
cw w LA

cw w LA
cw w LA

cw

1 1 33 . 65 . 97 33 129 . 161 . 193 . 225 .
2 2 34 . 66 . 98 35 130 . 162 . 194 . 226 .
3 3 35 . 67 . 99 . 131 34 163 . 195 . 227 48
4 4 36 . 68 . 100 . 132 36 164 40 196 . 228 .
5 5 37 . 69 . 101 . 133 . 165 . 197 . 229 .
6 6 38 17 70 . 102 . 134 . 166 42 198 . 230 .
7 . 39 18 71 . 103 32 135 . 167 43 199 . 231 .
8 . 40 20 72 . 104 . 136 . 168 . 200 . 232 50
9 . 41 23 73 . 105 37 137 . 169 45 201 . 233 49
10 7 42 19 74 . 106 . 138 39 170 . 202 . 234 .
11 8 43 21 75 . 107 38 139 . 171 . 203 . 235 .
12 11 44 24 76 . 108 . 140 . 172 . 204 . 236 .
13 9 45 22 77 . 109 . 141 . 173 . 205 . 237 .
14 12 46 25 78 28 110 . 142 . 174 . 206 . 238 .
15 14 47 27 79 . 111 . 143 . 175 . 207 . 239 .
16 10 48 . 80 . 112 . 144 . 176 . 208 . 240 .
17 13 49 . 81 . 113 . 145 . 177 . 209 . 241 .
18 15 50 . 82 . 114 . 146 . 178 . 210 . 242 .
19 16 51 . 83 . 115 . 147 . 179 . 211 . 243 .
20 . 52 . 84 . 116 . 148 . 180 . 212 . 244 .
21 . 53 . 85 . 117 . 149 . 181 . 213 . 245 .
22 . 54 . 86 . 118 . 150 . 182 . 214 . 246 .
23 . 55 26 87 . 119 . 151 . 183 . 215 . 247 .
24 . 56 . 88 . 120 . 152 . 184 . 216 . 248 1
25 . 57 . 89 . 121 . 153 . 185 41 217 . 249 2
26 . 58 . 90 . 122 . 154 . 186 . 218 . 250 3
27 . 59 . 91 . 123 . 155 . 187 . 219 . 251 4
28 . 60 . 92 . 124 . 156 . 188 44 220 47 252 5
29 . 61 . 93 . 125 . 157 . 189 46 221 . 253 6
30 . 62 . 94 29 126 . 158 . 190 . 222 . 254 7
31 . 63 . 95 30 127 . 159 . 191 . 223 . 255 8
32 . 64 . 96 31 128 . 160 . 192 . 224 . 256 .

Dots denote zero values. The values of LA
cw with 1 ≤ w ≤ 247 are module indices and

with 248 ≤ w ≤ 255 are item indices.
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Table C.9 Optimal solution with four states

variables representing the interfaces

QC
1 30 QI

1 246 QM
1 30 QR

1 36,213 QR
4 0

QC
2 216 QI

2 152 QM
2 90 QR

2 70,679 QD
1 32

QC
3 31 QI

3 213 QR
3 0 QD

2 6,000

integer variables

XI
ci XR

cir XD
cid

r = 1 r = 2 d = 1 d = 2
c c c c c

i 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

A 13 97 13 17 119 18 . . . . . . . . .
B 13 97 13 17 119 18 . . . . . . . . .
C . . . 29 213 30 . . . 1 . 1 . . .
D . . . 29 122 30 . 91 . 1 . 1 . . .
E 29 123 . 1 . 31 . . . . . . . . .
F . . . . 123 31 . . . . . . . . .
G . 213 . . . . . . . . . . . . .
H . . . . . . . 213 . . . . 30 . .

Y M
cm Y R

cmr

r = 1 r = 2
c c c

m 1 2 3 1 2 3 1 2 3

32 (CDGH) . . . . . . . 3 .
47 (GH) . . 30 . . . . . 1
48 (FG) . . . . . . 30 . .
49 (EF) . 90 . . 3 . . . .

Dots denote zero values.
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C.6 Module and state definition for the two examples

For a better understanding the disassembly state graphs of the two small
examples (Fig. 4.13 and 4.14) are repeated here. Based on these graphs the
module definition matrices δcmi for each core as well as the state definition
matrices γM

cms and γI
cis are developed. We start with the module definition

for both examples (cores) in Table C.13. Only the relevant indices m and i
are listed. The state definitions are displayed in two separate Tables C.14

(ABCD)1

A(BCD)2 B(ACD)3 C(ABD)4 D(ABC)5

A.B(CD)6 A.C(BD)7 A.D(BC)8 B.C(AD)9 B.D(AC)10 C.D(AB)11

A.B.C.D
A–D . . . Items

(. . . )m . . . Module m

Fig. C.5 Disassembly state graph of example one

(ABCDEFGH)1

(AB)2(CD)3(EF)4(GH)5

A.B(CD)3(EF)4(GH)5 C.D(AB)2(EF)4(GH)5 E.F(AB)2(CD)3(GH)5 G.H.(AB)2(CD)3(EF)4

A.B.C.D(EF)4(GH)5

A.B.E.F(CD)3(GH)5
A.B.G.H(CD)3(EF)4

C.D.E.F(AB)2(GH)5
C.D.G.H(AB)2(EF)4

E.F.G.H(AB)2(CD)3

A.B.C.D.E.F(GH)5 A.B.C.D.G.H(EF)4 A.B.E.F.G.H(CD)3 C.D.E.F.G.H(AB)2

A.B.C.D.E.F.G.H
A–H . . . Items

(. . . )m . . . Module m

Fig. C.6 Disassembly state graph of example two
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Table C.13 Module definition

δcmi

c = 1 c = 2

item i item i

m A B C D A B C D E F G H

1 1 1 1 1 1 1 1 1 1 1 1 1
2 . 1 1 1 1 1 . . . . . .
3 1 . 1 1 . . 1 1 . . . .
4 1 1 . 1 . . . . 1 1 . .
5 1 1 1 . . . . . . . 1 1
6 . . 1 1
7 . 1 . 1
8 . 1 1 .
9 1 . . 1
10 1 . 1 .
11 1 1 . .

Dots denote zero values.

Table C.14 State definition of example one

state s

1 2 3 4 5 6 7 8 9 10 11 12

γM
1,m,s m

1 1 . . . . . . . . . . .
2 . 1 . . . . . . . . . .
3 . . 1 . . . . . . . . .
4 . . . 1 . . . . . . . .
5 . . . . 1 . . . . . . .
6 . . . . . 1 . . . . . .
7 . . . . . . 1 . . . . .
8 . . . . . . . 1 . . . .
9 . . . . . . . . 1 . . .
10 . . . . . . . . . 1 . .
11 . . . . . . . . . . 1 .

γI
1,i,s i

A . 1 . . . 1 1 1 . . . 1
B . . 1 . . 1 . . 1 1 . 1
C . . . 1 . . 1 . 1 . 1 1
D . . . . 1 . . 1 . 1 1 1

Dots denote zero values.

and C.15 for example one and two, respectively. In Table C.14 the alloca-
tion of one module per state becomes obvious. State s = 1 represents no
disassembly operation and states s = 12 and s = 17 represent the complete
disassembly for example one and two, respectively. Both tables contain the
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Table C.15 State definition of example two

state s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

γM
2,m,s m

1 1 . . . . . . . . . . . . . . . .
2 . 1 . 1 1 1 . . . 1 1 1 . . . 1 .
3 . 1 1 . 1 1 . 1 1 . . 1 . . 1 . .
4 . 1 1 1 . 1 1 . 1 . 1 . . 1 . . .
5 . 1 1 1 1 . 1 1 . 1 . . 1 . . . .

γI
2,i,s i

A . . 1 . . . 1 1 1 . . . 1 1 1 . 1
B . . 1 . . . 1 1 1 . . . 1 1 1 . 1
C . . . 1 . . 1 . . 1 1 . 1 1 . 1 1
D . . . 1 . . 1 . . 1 1 . 1 1 . 1 1
E . . . . 1 . . 1 . 1 . 1 1 . 1 1 1
F . . . . 1 . . 1 . 1 . 1 1 . 1 1 1
G . . . . . 1 . . 1 . 1 1 . 1 1 1 1
H . . . . . 1 . . 1 . 1 1 . 1 1 1 1

Dots denote zero values.

binary matrices, which is a different form of presenting basically the same
information as in Table 4.19 on page 227. Thus, both types are included in
this work.
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C.7 State quantity determination for example one

The example can be found in Sect. 4.4 and more specific in Eq. (4.148) on
page 242. For a better understanding the system of equations is repeated
here with the assumed solution vector (X Y )T.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 1 1 0 0 0 1
0 0 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 0 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

QS
1

QS
2

QS
3

QS
4

QS
5

QS
6

QS
7

QS
8

QS
9

QS
10

QS
11

QS
12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XA

XB

XC

XD

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
0
3
6
1
2
0
3
6
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.50)

The set of states is S = {1, . . . , 12} and the priorities are 1, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, and 4 for the states 1 through 12, respectively. Follow-
ing the algorithm in Fig. 4.15 on page 246 we start with the elimina-
tion of the rows with a zero value on the right hand side. These rows
are J̃ = {2, 7, 10, 11, 12, 13, 14, 15}. The corresponding selected states are
S̃ = {3, 6, 7, 8, 9, 10, 11, 12}. After the elimination the system is reduced to
four states and seven rows.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
QS

1

QS
2

QS
4

QS
5

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

XA

XC

XD

Y1

Y2

Y4

Y5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3
6
1
2
3
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.51)

The set S is not empty and r has no elements with a value of zero. But,
rows with a row sum of one exist. Accordingly, the values of the quantity
variables QS

1 , Q
S
2 , Q

S
4 , and QS

5 are set to the values one, two, three, and
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six. All selected states are removed from S and the set S is empty. Hence,
the algorithm ends. The same result as with the closed form expression is
found.
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C.8 Incoming units and their assignment for cores 2
and 3

Table C.16 Listing of incoming units of core 2

item item item

unit A B C D E F G H unit A B C D E F G H unit A B C D E F G H

1 ◦ • • • • • • • 38 ◦ • • • • • • • 75 ◦ • • ◦ • • • •
2 • • ◦ ◦ • • • • 39 • ◦ • • • ◦ • • 76 • ◦ ◦ • • • • •
3 ◦ • • • • • • • 40 ◦ ◦ ◦ • • ◦ • • 77 ◦ • • ◦ • • • •
4 ◦ • • ◦ • • • • 41 ◦ • ◦ ◦ • • • • 78 ◦ • ◦ ◦ • • • •
5 ◦ ◦ ◦ • • • • • 42 • ◦ • ◦ • • • • 79 ◦ • ◦ ◦ • • • •
6 ◦ • ◦ ◦ • • • • 43 ◦ • ◦ ◦ • • • • 80 ◦ ◦ ◦ ◦ • • • •
7 • • ◦ • • • • • 44 • • ◦ • • • • • 81 • ◦ • ◦ • • • •
8 ◦ ◦ • ◦ • • • • 45 ◦ ◦ • ◦ • • • • 82 ◦ ◦ • • • • • •
9 ◦ • • ◦ • • • • 46 • • • ◦ • • • • 83 ◦ ◦ ◦ ◦ • • • •
10 ◦ ◦ • • • • • • 47 ◦ • ◦ • • • • • 84 • ◦ ◦ ◦ • • • •
11 ◦ ◦ • ◦ • • • • 48 ◦ ◦ • ◦ • • • • 85 ◦ • ◦ • • • • •
12 ◦ ◦ • • • • • • 49 • ◦ • ◦ • • • • 86 ◦ • ◦ • • • • •
13 ◦ • • ◦ • • • • 50 • ◦ ◦ • • • • • 87 • ◦ • ◦ • • • ◦
14 • ◦ ◦ • • • • • 51 ◦ ◦ • • • • • • 88 ◦ ◦ ◦ ◦ • • • ◦
15 • • ◦ ◦ • • • • 52 ◦ ◦ ◦ ◦ • • • • 89 ◦ • • • • ◦ • •
16 ◦ ◦ ◦ • • • • • 53 ◦ ◦ ◦ • • • • • 90 ◦ • • • • • • •
17 • • ◦ • • ◦ • • 54 • ◦ ◦ • • • • • 91 • • • ◦ • • • •
18 • ◦ ◦ ◦ • • • • 55 ◦ ◦ ◦ ◦ • • • • 92 ◦ • • ◦ • • • •
19 • ◦ • ◦ • • • • 56 ◦ ◦ • • • • • • 93 ◦ ◦ ◦ • • • • •
20 • • ◦ ◦ • • • • 57 ◦ • ◦ • • • • • 94 • ◦ ◦ ◦ • • • •
21 • ◦ • ◦ • • • • 58 • • ◦ • • • • • 95 ◦ • ◦ • • • • •
22 • ◦ • ◦ • • • • 59 ◦ • ◦ ◦ • • • • 96 • • ◦ ◦ • • • •
23 ◦ ◦ • ◦ • • • • 60 • ◦ ◦ ◦ • • • • 97 • • ◦ ◦ • • • •
24 • • ◦ • • • • • 61 • • ◦ • • • • • 98 ◦ ◦ • ◦ • • • •
25 ◦ ◦ ◦ • • • • • 62 ◦ ◦ ◦ ◦ • • • • 99 ◦ • • • • • • •
26 • • ◦ • • • • • 63 • • • ◦ • • • • 100 ◦ ◦ ◦ ◦ • • • •
27 ◦ ◦ ◦ ◦ • ◦ • ◦ 64 ◦ ◦ • ◦ • • • • 101 • ◦ • • • • • •
28 • • ◦ ◦ • • • • 65 • • • • • • • • 102 • • • ◦ • • • •
29 ◦ ◦ • • • • • • 66 ◦ • • • • • • • 103 • • • • • • • •
30 • ◦ ◦ • • • • • 67 ◦ • ◦ ◦ • • • • 104 ◦ • ◦ ◦ • • • ◦
31 ◦ ◦ • • • • • • 68 ◦ ◦ • ◦ • • • ◦ 105 ◦ ◦ ◦ ◦ • • • •
32 ◦ ◦ ◦ ◦ • • • • 69 ◦ • ◦ ◦ • • • • 106 • • • ◦ • • • •
33 • ◦ • • • • • • 70 • • ◦ ◦ • • • • 107 • • • ◦ • • • •
34 • • ◦ ◦ • • • • 71 ◦ ◦ • • • • • • 108 ◦ • • • • • • •
35 ◦ ◦ • ◦ • • • • 72 ◦ ◦ ◦ ◦ • • • • 109 ◦ ◦ ◦ • • • • •
36 • • ◦ • • • • • 73 • • ◦ • • • • • 110 ◦ • ◦ • • • • •
37 • ◦ • • • • • • 74 • • • • • • • • 111 • ◦ ◦ • • • • •

The symbols •, ◦, and × denote the condition of an item that allows distribution, recy-
cling, and disposal, recycling and disposal, as well as disposal only, respectively.
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Table C.17 Listing of incoming units of core 2 (cont.)

item item item

unit A B C D E F G H unit A B C D E F G H unit A B C D E F G H

112 • • • • • • • • 148 • ◦ ◦ ◦ • • • • 184 • ◦ ◦ ◦ • • • •
113 • • • • • • • • 149 • ◦ • • • • • ◦ 185 ◦ ◦ • ◦ • • • •
114 • ◦ • ◦ • • • • 150 ◦ • • • • • • • 186 • ◦ ◦ ◦ • • • •
115 ◦ ◦ • • • • • • 151 ◦ • ◦ ◦ • • • • 187 ◦ ◦ ◦ ◦ • • ◦ •
116 ◦ • ◦ ◦ • • • • 152 • ◦ ◦ ◦ • • • • 188 • ◦ • ◦ • • • •
117 ◦ • ◦ • • ◦ • • 153 ◦ ◦ ◦ • • • • ◦ 189 • ◦ • • • • • •
118 ◦ ◦ ◦ ◦ • • • • 154 • • • ◦ • • • • 190 • ◦ ◦ ◦ • • ◦ •
119 ◦ • • ◦ • • • • 155 ◦ ◦ ◦ • • • • • 191 ◦ • • ◦ • • • •
120 ◦ ◦ ◦ ◦ • • • • 156 ◦ ◦ ◦ • • • • • 192 • ◦ ◦ • • ◦ • •
121 • ◦ • ◦ • • • • 157 ◦ ◦ ◦ ◦ • • • • 193 ◦ • • ◦ • • • ◦
122 • ◦ ◦ ◦ • • • • 158 ◦ ◦ ◦ • • • • • 194 ◦ ◦ ◦ • • • • •
123 • ◦ ◦ ◦ • ◦ • • 159 • • • ◦ • • • • 195 ◦ ◦ ◦ ◦ ◦ • • •
124 • • ◦ ◦ • • • • 160 • • ◦ • • • • • 196 • ◦ ◦ • • • • •
125 • • ◦ • • • • ◦ 161 • ◦ ◦ • • • • • 197 ◦ ◦ ◦ ◦ • • • •
126 • • ◦ ◦ • • • • 162 • ◦ ◦ ◦ • • • • 198 ◦ ◦ • ◦ • • • •
127 ◦ • ◦ ◦ • • • • 163 • ◦ • ◦ • • • • 199 • • • • • • • •
128 ◦ ◦ • ◦ • • • • 164 ◦ • • ◦ • • • • 200 ◦ • • ◦ • • • •
129 • ◦ ◦ ◦ • • • • 165 ◦ • • • • • • ◦ 201 ◦ • ◦ • • • • •
130 • ◦ ◦ ◦ • • • • 166 ◦ ◦ • ◦ • • • • 202 • • • • • • • •
131 ◦ • • ◦ • • • • 167 • • • ◦ • • • • 203 ◦ • • ◦ • • • ◦
132 ◦ ◦ • • • ◦ • • 168 ◦ ◦ • • • • • • 204 • • ◦ ◦ • • • •
133 • • ◦ ◦ • • • ◦ 169 ◦ • ◦ • • • • • 205 ◦ • ◦ ◦ • ◦ • •
134 • ◦ • • • • • • 170 • • ◦ • • • • • 206 ◦ • ◦ ◦ • • • •
135 • • • ◦ • ◦ • • 171 ◦ • ◦ • • • • • 207 • ◦ • • • • • •
136 • ◦ ◦ • • • • • 172 ◦ ◦ ◦ • • • • • 208 ◦ ◦ ◦ • • • • •
137 ◦ ◦ ◦ • • • • • 173 ◦ • ◦ ◦ • • • • 209 ◦ • • • • • • •
138 ◦ • • • • • • • 174 ◦ • ◦ • • • • • 210 • ◦ • • • • • •
139 • ◦ ◦ • • • • • 175 • ◦ ◦ ◦ ◦ • • • 211 ◦ ◦ • • • • • •
140 • ◦ ◦ • • • • • 176 ◦ • ◦ ◦ • • • • 212 • ◦ • • • • • •
141 • • • ◦ • • • • 177 ◦ ◦ ◦ ◦ • • • • 213 ◦ ◦ ◦ ◦ • • • •
142 ◦ ◦ ◦ ◦ • • • • 178 ◦ • ◦ • • • • • 214 • ◦ ◦ ◦ • • • •
143 ◦ ◦ ◦ ◦ • • • • 179 • ◦ ◦ • • • • • 215 • ◦ • • • • • •
144 ◦ ◦ • ◦ • • • • 180 ◦ ◦ • ◦ • • • • 216 • ◦ • • • • • •
145 ◦ • ◦ • • • • • 181 • ◦ • ◦ • • • • 217 ◦ ◦ • • • • • •
146 • ◦ ◦ ◦ • • • ◦ 182 ◦ ◦ ◦ • • • • • 218 • ◦ ◦ ◦ • • • •
147 • • • • • • • • 183 ◦ ◦ ◦ ◦ • • • •
The symbols •, ◦, and × denote the condition of an item that allows distribution, recy-
cling, and disposal, recycling and disposal, as well as disposal only, respectively.
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Table C.18 State assignment for core 2

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 1 6 10 58 60 A B C D E F G H 1 6 10 49

1 4.74 9.71 9.71 23.77 19.04 58 r i r r i r i
2 4.75 9.71 14.16 28.17 23.49 58 i i r r i r i
3 4.75 9.72 9.72 23.69 19.05 58 r i r r i r i
4 4.76 9.72 9.72 23.65 19.05 58 r i r r i r i
5 4.76 9.73 9.72 19.23 14.67 58 r r r r i r i
6 4.76 9.73 9.72 23.56 19.05 58 r i r r i r i
7 4.76 9.73 14.18 27.97 23.50 58 i i r r i r i
8 4.77 9.74 9.73 19.11 14.68 58 r r r r i r i
9 4.77 9.74 9.73 23.43 19.05 58 r i r r i r i
10 4.77 9.74 9.74 19.02 14.68 58 r r r r i r i
11 4.77 9.74 9.74 18.97 14.68 58 r r r r i r i
12 4.77 9.74 9.73 18.92 14.68 58 r r r r i r i
13 4.77 9.74 9.73 23.25 19.05 58 r i r r i r i
14 4.77 9.74 14.20 23.30 19.14 58 i r r r i r i
15 4.78 9.74 14.20 27.63 23.52 58 i i r r i r i
16 4.79 9.75 9.75 18.75 14.69 58 r r r r i r i
17 4.79 9.75 14.21 18.57 23.53 60 i i r r i r i r
18 4.79 9.75 14.21 23.16 19.15 58 i r r r i r i
19 4.79 9.76 14.21 23.12 19.15 58 i r r r i r i
20 4.80 9.76 14.21 27.44 23.53 58 i i r r i r i
21 4.81 9.77 14.22 23.03 19.16 58 i r r r i r i
22 4.81 9.77 14.22 22.98 19.16 58 i r r r i r i
23 4.82 9.78 9.78 18.49 14.72 58 r r r r i r i
24 4.81 9.78 14.22 27.26 23.54 58 i i r r i r i
25 4.82 9.79 9.78 18.39 14.73 58 r r r r i r i
26 4.82 9.79 14.23 27.16 23.55 58 i i r r i r i
27 4.83 9.80 9.79 9.78 14.73 60 r r r r i r i r
28 4.83 9.79 14.23 27.11 23.55 58 i i r r i r i
29 4.84 9.80 9.80 18.25 14.74 58 r r r r i r i
30 4.83 9.80 14.24 22.64 19.18 58 i r r r i r i
31 4.84 9.80 9.80 18.15 14.74 58 r r r r i r i
32 4.84 9.80 9.80 18.09 14.74 58 r r r r i r i
33 4.84 9.80 14.24 22.48 19.18 58 i r r r i r i
34 4.84 9.80 14.24 26.81 23.56 58 i i r r i r i
35 4.85 9.81 9.81 17.94 14.75 58 r r r r i r i
36 4.85 9.81 14.25 26.71 23.57 58 i i r r i r i
37 4.86 9.82 14.26 22.28 19.20 58 i r r r i r i
38 4.87 9.83 9.82 22.17 19.14 58 r i r r i r i
39 4.87 9.83 14.27 14.25 19.20 60 i r r r i r i r
40 4.87 9.83 9.83 9.81 14.76 60 r r r r i r i r

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.
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Table C.19 State assignment for core 2 (cont.)

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 1 6 10 58 60 A B C D E F G H 1 6 10 49

41 4.86 9.82 9.82 22.11 19.14 58 r i r r i r i
42 4.87 9.83 14.27 22.12 19.20 58 i r r r i r i
43 4.87 9.83 9.83 22.01 19.15 58 r i r r i r i
44 4.88 9.84 14.27 26.39 23.59 58 i i r r i r i
45 4.89 9.85 9.85 17.52 14.78 58 r r r r i r i
46 4.89 9.85 14.28 26.28 23.59 58 i i r r i r i
47 4.90 9.86 9.86 21.79 19.16 58 r i r r i r i
48 4.91 9.86 9.86 17.36 14.79 58 r r r r i r i
49 4.91 9.86 14.30 21.74 19.23 58 i r r r i r i
50 4.91 9.87 14.30 21.68 19.23 58 i r r r i r i
51 4.92 9.87 9.87 17.18 14.80 58 r r r r i r i
52 4.92 9.87 9.87 17.12 14.80 58 r r r r i r i
53 4.91 9.87 9.87 17.06 14.80 58 r r r r i r i
54 4.91 9.87 14.31 21.43 19.24 58 i r r r i r i
55 4.92 9.88 9.87 16.93 14.80 58 r r r r i r i
56 4.92 9.88 9.87 16.87 14.80 58 r r r r i r i
57 4.92 9.87 9.87 21.19 19.19 58 r i r r i r i
58 4.92 9.88 14.32 25.57 23.64 58 i i r r i r i
59 4.94 9.89 9.89 21.07 19.20 58 r i r r i r i
60 4.94 9.90 14.34 21.07 19.27 58 i r r r i r i
61 4.95 9.90 14.34 25.38 23.65 58 i i r r i r i
62 4.96 9.92 9.91 16.50 14.84 58 r r r r i r i
63 4.96 9.92 14.35 25.25 23.66 58 i i r r i r i
64 4.97 9.93 9.92 16.37 14.85 58 r r r r i r i
65 4.97 9.93 14.36 25.12 23.67 58 i i r r i r i
66 4.99 9.94 9.94 20.62 19.23 58 r i r r i r i
67 4.99 9.95 9.94 20.55 19.23 58 r i r r i r i
68 5.00 9.95 9.95 16.11 14.87 58 r r r r i r i
69 5.00 9.95 9.95 20.40 19.24 58 r i r r i r i
70 5.01 9.96 14.40 24.78 23.69 58 i i r r i r i
71 5.02 9.97 9.97 15.91 14.89 58 r r r r i r i
72 5.02 9.97 9.97 15.83 14.89 58 r r r r i r i
73 5.02 9.97 14.42 24.57 23.70 58 i i r r i r i
74 5.03 9.98 14.43 24.50 23.71 58 i i r r i r i
75 5.05 10.00 10.00 19.98 19.27 58 r i r r i r i
76 5.06 10.01 14.45 20.00 19.37 58 i r r r i r i
77 5.06 10.01 10.01 19.83 19.28 58 r i r r i r i
78 5.07 10.02 10.02 19.75 19.28 58 r i r r i r i
79 5.08 10.03 10.02 19.67 19.28 58 r i r r i r i
80 5.09 10.03 10.03 15.26 14.95 58 r r r r i r i

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.
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Table C.20 State assignment for core 2 (cont.)

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 1 6 10 58 60 A B C D E F G H 1 6 10 49

81 5.09 10.04 14.49 19.64 19.40 58 i r r r i r i
82 5.10 10.04 10.04 15.10 14.95 58 r r r r i r i
83 5.10 10.04 10.04 15.02 14.95 58 r r r r i r i
84 5.10 10.04 14.50 19.39 19.41 60 i r r r i r i r
85 5.10 10.04 10.04 19.29 19.30 60 r i r r i r i r
86 5.10 10.04 10.04 19.29 19.30 60 r i r r i r i r
87 5.10 10.04 14.50 19.42 19.41 58 i r r r i r i
88 5.11 10.05 10.05 14.88 14.96 60 r r r r i r i r
89 5.10 10.05 10.04 14.36 19.30 60 r i r r i r i r
90 5.10 10.05 10.04 19.22 19.29 60 r i r r i r i r
91 5.10 10.05 14.51 23.69 23.75 60 i i r r i r i r
92 5.11 10.05 10.05 19.23 19.28 60 r i r r i r i r
93 5.11 10.05 10.05 14.91 14.96 60 r r r r i r i r
94 5.10 10.05 14.51 19.38 19.42 60 i r r r i r i r
95 5.11 10.05 10.04 19.24 19.27 60 r i r r i r i r
96 5.11 10.05 14.51 23.72 23.74 60 i i r r i r i r
97 5.12 10.06 14.52 23.72 23.74 60 i i r r i r i r
98 5.12 10.07 10.06 14.96 14.96 60 r r r r i r i r
99 5.12 10.06 10.05 19.27 19.26 58 r i r r i r i
100 5.13 10.07 10.06 14.87 14.96 60 r r r r i r i r
101 5.12 10.06 14.53 19.35 19.43 60 i r r r i r i r
102 5.12 10.06 14.52 23.66 23.73 60 i i r r i r i r
103 5.13 10.07 14.53 23.66 23.73 60 i i r r i r i r
104 5.14 10.08 10.07 19.21 19.27 60 r i r r i r i r
105 5.14 10.08 10.07 14.92 14.97 60 r r r r i r i r
106 5.13 10.07 14.53 23.68 23.72 60 i i r r i r i r
107 5.14 10.08 14.54 23.69 23.72 60 i i r r i r i r
108 5.15 10.09 10.08 19.23 19.25 60 r i r r i r i r
109 5.16 10.09 10.09 14.97 14.98 60 r r r r i r i r
110 5.15 10.08 10.08 19.24 19.24 60 r i r r i r i r
111 5.15 10.08 14.55 19.45 19.44 58 i r r r i r i
112 5.16 10.09 14.55 23.61 23.71 60 i i r r i r i r
113 5.17 10.10 14.56 23.62 23.70 60 i i r r i r i r
114 5.18 10.11 14.56 19.37 19.45 60 i r r r i r i r
115 5.18 10.11 10.11 14.93 15.00 60 r r r r i r i r
116 5.18 10.11 10.10 19.18 19.24 60 r i r r i r i r
117 5.18 10.11 10.10 14.32 19.23 60 r i r r i r i r
118 5.18 10.11 10.10 14.94 14.99 60 r r r r i r i r
119 5.17 10.10 10.09 19.18 19.22 60 r i r r i r i r
120 5.17 10.10 10.09 14.95 14.98 60 r r r r i r i r

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.
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Table C.21 State assignment for core 2 (cont.)

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 1 6 10 58 60 A B C D E F G H 1 6 10 49

121 5.16 10.09 14.56 19.43 19.44 60 i r r r i r i r
122 5.17 10.09 14.56 19.43 19.44 60 i r r r i r i r
123 5.17 10.09 14.56 14.53 19.43 60 i r r r i r i r
124 5.17 10.09 14.55 23.68 23.67 58 i i r r i r i
125 5.19 10.12 14.57 23.56 23.68 60 i i r r i r i r
126 5.21 10.13 14.57 23.57 23.67 60 i i r r i r i r
127 5.22 10.14 10.13 19.13 19.22 60 r i r r i r i r
128 5.22 10.14 10.14 14.93 15.01 60 r r r r i r i r
129 5.21 10.13 14.58 19.38 19.45 60 i r r r i r i r
130 5.22 10.13 14.58 19.39 19.44 60 i r r r i r i r
131 5.22 10.14 10.13 19.16 19.21 60 r i r r i r i r
132 5.22 10.14 10.13 10.10 15.00 60 r r r r i r i r
133 5.21 10.13 14.57 23.61 23.64 60 i i r r i r i r
134 5.23 10.14 14.58 19.42 19.44 60 i r r r i r i r
135 5.23 10.14 14.57 18.74 23.63 60 i i r r i r i r
136 5.24 10.16 14.58 19.43 19.44 60 i r r r i r i r
137 5.25 10.16 10.15 15.01 15.01 58 r r r r i r i
138 5.25 10.16 10.15 19.07 19.20 60 r i r r i r i r
139 5.25 10.16 14.59 19.32 19.44 60 i r r r i r i r
140 5.26 10.16 14.59 19.33 19.44 60 i r r r i r i r
141 5.26 10.17 14.58 23.52 23.62 60 i i r r i r i r
142 5.28 10.18 10.17 14.94 15.02 60 r r r r i r i r
143 5.27 10.17 10.16 14.94 15.01 60 r r r r i r i r
144 5.26 10.16 10.15 14.94 14.99 60 r r r r i r i r
145 5.25 10.15 10.14 19.13 19.17 60 r i r r i r i r
146 5.25 10.15 14.58 19.39 19.42 60 i r r r i r i r
147 5.25 10.15 14.57 23.57 23.59 60 i i r r i r i r
148 5.27 10.17 14.58 19.41 19.41 60 i r r r i r i r
149 5.27 10.17 14.57 19.42 19.41 58 i r r r i r i
150 5.29 10.19 10.18 19.03 19.18 60 r i r r i r i r
151 5.30 10.19 10.18 19.03 19.16 60 r i r r i r i r
152 5.30 10.19 14.60 19.30 19.42 60 i r r r i r i r
153 5.31 10.20 10.19 14.90 15.01 60 r r r r i r i r
154 5.30 10.18 14.59 23.47 23.56 60 i i r r i r i r
155 5.32 10.20 10.19 14.93 15.01 60 r r r r i r i r
156 5.31 10.19 10.18 14.93 14.99 60 r r r r i r i r
157 5.29 10.18 10.17 14.93 14.98 60 r r r r i r i r
158 5.28 10.16 10.15 14.93 14.96 60 r r r r i r i r
159 5.27 10.15 14.57 23.52 23.53 60 i i r r i r i r
160 5.29 10.17 14.58 23.52 23.51 58 i i r r i r i

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.
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Table C.22 State assignment for core 2 (cont.)

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 1 6 10 58 60 A B C D E F G H 1 6 10 49

161 5.33 10.21 14.61 19.22 19.40 60 i r r r i r i r
162 5.34 10.21 14.60 19.22 19.39 60 i r r r i r i r
163 5.34 10.21 14.59 19.23 19.38 60 i r r r i r i r
164 5.35 10.22 10.21 18.99 19.12 60 r i r r i r i r
165 5.36 10.22 10.21 18.98 19.10 60 r i r r i r i r
166 5.36 10.23 10.21 14.89 14.99 60 r r r r i r i r
167 5.35 10.21 14.60 23.38 23.46 60 i i r r i r i r
168 5.38 10.23 10.22 14.93 14.99 60 r r r r i r i r
169 5.37 10.22 10.21 19.00 19.04 60 r i r r i r i r
170 5.37 10.22 14.62 23.40 23.42 60 i i r r i r i r
171 5.40 10.25 10.24 19.00 19.00 58 r i r r i r i
172 5.43 10.28 10.26 14.77 15.01 60 r r r r i r i r
173 5.42 10.26 10.25 18.75 18.97 60 r i r r i r i r
174 5.43 10.27 10.25 18.73 18.93 60 r i r r i r i r
175 5.44 −∞ −∞ 14.63 −∞ 58 i r r r i r r
176 5.43 10.28 10.27 18.73 18.90 60 r i r r i r i r
177 5.44 10.29 10.27 14.84 14.99 60 r r r r i r i r
178 5.42 10.27 10.26 18.71 18.83 60 r i r r i r i r
179 5.43 10.28 14.71 19.31 19.41 60 i r r r i r i r
180 5.44 10.28 10.27 14.88 14.96 60 r r r r i r i r
181 5.43 10.26 14.70 19.33 19.38 60 i r r r i r i r
182 5.44 10.27 10.26 14.91 14.93 60 r r r r i r i r
183 5.42 10.25 10.23 14.91 14.90 58 r r r r i r i
184 5.44 10.26 14.70 19.04 19.35 60 i r r r i r i r
185 5.45 10.26 10.25 14.60 14.89 60 r r r r i r i r
186 5.43 10.24 14.68 19.04 19.31 60 i r r r i r i r
187 5.45 10.25 10.23 −∞ −∞ 6 i r
188 5.39 −∞ 14.62 19.05 19.27 60 i r r r i r i r
189 5.41 −∞ 14.61 19.05 19.25 60 i r r r i r i r
190 5.42 −∞ 14.59 −∞ −∞ 10 i i r
191 5.40 −∞ −∞ 18.62 18.75 60 r i r r i r i r
192 5.42 −∞ −∞ 14.47 19.20 60 i r r r i r i r
193 5.43 −∞ −∞ 18.59 18.68 60 r i r r i r i r
194 5.45 −∞ −∞ 14.73 14.78 60 r r r r i r i r
195 5.43 −∞ −∞ 10.04 −∞ 58 r r r r i r r
196 5.35 −∞ −∞ 19.14 19.12 58 i r r r i r i
197 5.42 −∞ −∞ 14.24 14.72 60 r r r r i r i r
198 5.39 −∞ −∞ 14.20 14.65 60 r r r r i r i r
199 5.35 −∞ −∞ 22.52 22.94 60 i i r r i r i r
200 5.43 −∞ −∞ 18.04 18.43 60 r i r r i r i r

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.
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Table C.23 State assignment for core 2 (cont.)

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 1 6 10 58 60 A B C D E F G H 1 6 10 49

201 5.45 −∞ −∞ 17.95 18.31 60 r i r r i r i r
202 5.48 −∞ −∞ 22.31 22.62 60 i i r r i r i r
203 5.58 −∞ −∞ 17.75 18.02 60 r i r r i r i r
204 5.62 −∞ −∞ 22.02 22.24 60 i i r r i r i r
205 5.74 −∞ −∞ −∞ 17.49 60 r i r r i r i r
206 5.80 −∞ −∞ 16.82 16.97 60 r i r r i r i r
207 5.87 −∞ −∞ 18.99 19.07 60 i r r r i r i r
208 5.95 −∞ −∞ 14.52 14.51 58 r r r r i r i
209 6.05 −∞ −∞ −∞ 15.95 60 r i r r i r i r
210 6.17 −∞ −∞ −∞ 18.99 60 i r r r i r i r
211 6.33 −∞ −∞ −∞ 14.33 60 r r r r i r i r
212 6.37 −∞ −∞ −∞ 18.70 60 i r r r i r i r
213 6.61 −∞ −∞ −∞ 13.92 60 r r r r i r i r
214 6.72 −∞ −∞ −∞ 18.18 60 i r r r i r i r
215 7.19 −∞ −∞ −∞ 17.69 60 i r r r i r i r
216 8.00 −∞ −∞ −∞ 16.85 60 i r r r i r i r
217 9.75 −∞ −∞ −∞ −∞ 1 r
218 −∞ −∞ −∞ −∞ 21.74 60 i r r r i r i r

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.

Table C.24 Listing of incoming units of core 3

item item item

unit A B C D E F G H unit A B C D E F G H unit A B C D E F G H

1 • • • • • • • • 12 ◦ ◦ ◦ ◦ • • • • 23 • • ◦ • • • • •
2 ◦ ◦ ◦ ◦ • • • • 13 ◦ ◦ ◦ ◦ • • • • 24 ◦ ◦ × × ◦ ◦ • ◦
3 • • • ◦ • • • • 14 ◦ ◦ • ◦ • • • • 25 • ◦ ◦ ◦ • • • •
4 • • ◦ ◦ • • • • 15 ◦ • ◦ • • • • • 26 • ◦ • ◦ • • • •
5 ◦ • • ◦ • • • • 16 ◦ ◦ ◦ • • • • • 27 • • ◦ ◦ • • • •
6 • ◦ • ◦ • • • • 17 ◦ ◦ • • • • • • 28 ◦ • ◦ • • • • •
7 ◦ ◦ ◦ • • • • • 18 ◦ ◦ • • • • • • 29 ◦ • • ◦ • • • •
8 ◦ • ◦ ◦ • • • • 19 ◦ • ◦ ◦ • • • • 30 ◦ ◦ • ◦ • • • •
9 ◦ • • • • • • • 20 • ◦ ◦ ◦ • • • • 31 ◦ ◦ ◦ ◦ • ◦ • •
10 • • ◦ ◦ • • • • 21 • ◦ ◦ • • • • •
11 • ◦ • • • • • • 22 • ◦ ◦ • • • • •

The symbols •, ◦, and × denote the condition of an item that allows distribution, recy-
cling, and disposal, recycling and disposal, as well as disposal only, respectively.
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Table C.25 State assignment for core 3

state priority πS(s)
selected
unit
s

item usage u module usage u

s i m

unit 15 56 A B C D E F 14 47

1 5.27 32.68 56 i i r r r r i
2 5.31 24.54 56 r r r r r r i
3 5.29 32.59 56 i i r r r r i
4 5.33 32.50 56 i i r r r r i
5 5.39 28.47 56 r i r r r r i
6 5.40 28.46 56 i r r r r r i
7 5.42 24.49 56 r r r r r r i
8 5.39 28.33 56 r i r r r r i
9 5.41 28.22 56 r i r r r r i
10 5.43 32.03 56 i i r r r r i
11 5.50 28.24 56 i r r r r r i
12 5.53 24.36 56 r r r r r r i
13 5.50 24.28 56 r r r r r r i
14 5.47 24.18 56 r r r r r r i
15 5.44 27.74 56 r i r r r r i
16 5.47 24.01 56 r r r r r r i
17 5.43 23.88 56 r r r r r r i
18 5.38 23.73 56 r r r r r r i
19 5.33 27.14 56 r i r r r r i
20 5.36 27.41 56 i r r r r r i
21 5.40 27.14 56 i r r r r r i
22 5.44 26.81 56 i r r r r r i
23 5.49 29.86 56 i i r r r r i
24 3.94 −∞ 15 d d r
25 −∞ 27.19 56 i r r r r r i
26 −∞ 26.54 56 i r r r r r i
27 −∞ 28.80 56 i i r r r r i
28 −∞ 26.53 56 r i r r r r i
29 −∞ 25.27 56 r i r r r r i
30 −∞ 23.07 56 r r r r r r i
31 −∞ 22.61 56 r r r r r r i

The values i, r, and d denote the usage of an item/module for distribution, recycling, and
disposal, respectively. Values are rounded to two digits. Values with less than two post
decimal digits indicate an exact value without rounding being necessary.
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C.9 Incoming units and their assignment with LP for
cores 2 and 3

The state and usage assignment for the cores 2 and 3 are listed in the sequel.
Thereby, the order of incoming units is identical to the ones in Tables C.16
and C.24.

In total, one feasible state assignment exists for core 3. For core 2 approx-
imately 6.26 · 1059 feasible state assignments exist. The estimated number
of assignments for core 2 is based on the assumption, that state 58 and 60
can more or less be substituted, because items E and F are very often in
a condition for distribution (205 units of the required 215 units). 90 times
the module m = 49 is required for distribution so that 115 times state 60
can be selected of the 205 times, where item E and F are in a distributable

condition. With these 90 (state 58) and 115 (state 60) times (90+115)!
90!·115! per-

mutations are possible. Note that all other items, modules, and states are
neglected for this estimation.

Table C.26 State assignment for core 2 using LP

sel.
state
s

item usage u mod. usage u
sel.
state
s

item usage u mod. usage u

i m i m

unit A B C D E F G H 1 6 10 49 unit A B C D E F G H 1 6 10 49

1 58 r i r r i r i 21 58 i r r r i r i
2 60 i i r r i r i r 22 60 i r r r i r i r
3 58 r i r r i r i 23 60 r r r r i r i r
4 60 r i r r i r i r 24 58 i i r r i r i
5 58 r r r r i r i 25 58 r r r r i r i
6 60 r i r r i r i r 26 60 i i r r i r i r
7 60 i i r r i r i r 27 60 r r r r i r i r
8 58 r r r r i r i 28 58 i i r r i r i
9 58 r i r r i r i 29 60 r r r r i r i r
10 60 r r r r i r i r 30 58 i r r r i r i
11 58 r r r r i r i 31 58 r r r r i r i
12 60 r r r r i r i r 32 60 r r r r i r i r
13 60 r i r r i r i r 33 58 i r r r i r i
14 58 i r r r i r i 34 60 i i r r i r i r
15 58 i i r r i r i 35 60 r r r r i r i r
16 60 r r r r i r i r 36 60 i i r r i r i r
17 60 i i r r i r i r 37 58 i r r r i r i
18 60 i r r r i r i r 38 60 r i r r i r i r
19 58 i r r r i r i 39 60 i r r r i r i r
20 60 i i r r i r i r 40 60 r r r r i r i r

The i, r, and d denote the usage of an item/module for distribution, recycling, and disposal, respectively.
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Table C.27 State assignment for core 2 using LP (cont.)

sel.
state
s

item usage u mod. usage u
sel.
state
s

item usage u mod. usage u

i m i m

unit A B C D E F G H 1 6 10 49 unit A B C D E F G H 1 6 10 49

41 60 r i r r i r i r 86 58 r i r r i r i
42 60 i r r r i r i r 87 60 i r r r i r i r
43 58 r i r r i r i 88 60 r r r r i r i r
44 60 i i r r i r i r 89 60 r i r r i r i r
45 60 r r r r i r i r 90 60 r i r r i r i r
46 60 i i r r i r i r 91 60 i i r r i r i r
47 60 r i r r i r i r 92 58 r i r r i r i
48 60 r r r r i r i r 93 58 r r r r i r i
49 58 i r r r i r i 94 60 i r r r i r i r
50 58 i r r r i r i 95 60 r i r r i r i r
51 60 r r r r i r i r 96 60 i i r r i r i r
52 58 r r r r i r i 97 60 i i r r i r i r
53 60 r r r r i r i r 98 60 r r r r i r i r
54 60 i r r r i r i r 99 58 r i r r i r i
55 60 r r r r i r i r 100 58 r r r r i r i
56 60 r r r r i r i r 101 58 i r r r i r i
57 58 r i r r i r i 102 58 i i r r i r i
58 60 i i r r i r i r 103 58 i i r r i r i
59 60 r i r r i r i r 104 60 r i r r i r i r
60 58 i r r r i r i 105 60 r r r r i r i r
61 60 i i r r i r i r 106 60 i i r r i r i r
62 58 r r r r i r i 107 58 i i r r i r i
63 60 i i r r i r i r 108 58 r i r r i r i
64 58 r r r r i r i 109 58 r r r r i r i
65 60 i i r r i r i r 110 58 r i r r i r i
66 58 r i r r i r i 111 60 i r r r i r i r
67 60 r i r r i r i r 112 58 i i r r i r i
68 58 r r r r i r i 113 58 i i r r i r i
69 60 r i r r i r i r 114 58 i r r r i r i
70 60 i i r r i r i r 115 60 r r r r i r i r
71 60 r r r r i r i r 116 58 r i r r i r i
72 60 r r r r i r i r 117 60 r i r r i r i r
73 58 i i r r i r i 118 60 r r r r i r i r
74 60 i i r r i r i r 119 60 r i r r i r i r
75 58 r i r r i r i 120 58 r r r r i r i
76 60 i r r r i r i r 121 58 i r r r i r i
77 60 r i r r i r i r 122 60 i r r r i r i r
78 58 r i r r i r i 123 60 i r r r i r i r
79 60 r i r r i r i r 124 60 i i r r i r i r
80 58 r r r r i r i 125 60 i i r r i r i r
81 60 i r r r i r i r 126 60 i i r r i r i r
82 58 r r r r i r i 127 58 r i r r i r i
83 58 r r r r i r i 128 60 r r r r i r i r
84 60 i r r r i r i r 129 60 i r r r i r i r
85 60 r i r r i r i r 130 60 i r r r i r i r

The i, r, and d denote the usage of an item/module for distribution, recycling, and disposal, respectively.
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Table C.28 State assignment for core 2 using LP (cont.)

sel.
state
s

item usage u mod. usage u
sel.
state
s

item usage u mod. usage u

i m i m

unit A B C D E F G H 1 6 10 49 unit A B C D E F G H 1 6 10 49

131 60 r i r r i r i r 175 58 i r r r i r r
132 58 r r r r i r r 176 58 r i r r i r i
133 58 i i r r i r i 177 60 r r r r i r i r
134 60 i r r r i r i r 178 60 r i r r i r i r
135 60 i i r r i r i r 179 60 i r r r i r i r
136 58 i r r r i r i 180 60 r r r r i r i r
137 58 r r r r i r i 181 58 i r r r i r i
138 58 r i r r i r i 182 58 r r r r i r i
139 58 i r r r i r i 183 60 r r r r i r i r
140 60 i r r r i r i r 184 60 i r r r i r i r
141 58 i i r r i r i 185 60 r r r r i r i r
142 58 r r r r i r i 186 60 i r r r i r i r
143 58 r r r r i r i 187 6 i r
144 60 r r r r i r i r 188 60 i r r r i r i r
145 60 r i r r i r i r 189 58 i r r r i r i
146 58 i r r r i r i 190 10 i i r
147 58 i i r r i r i 191 60 r i r r i r i r
148 58 i r r r i r i 192 60 i r r r i r i r
149 58 i r r r i r i 193 58 r i r r i r i
150 58 r i r r i r i 194 58 r r r r i r i
151 60 r i r r i r i r 195 1 r
152 60 i r r r i r i r 196 60 i r r r i r i r
153 58 r r r r i r i 197 58 r r r r i r i
154 60 i i r r i r i r 198 60 r r r r i r i r
155 58 r r r r i r i 199 60 i i r r i r i r
156 60 r r r r i r i r 200 58 r i r r i r i
157 60 r r r r i r i r 201 60 r i r r i r i r
158 60 r r r r i r i r 202 58 i i r r i r i
159 58 i i r r i r i 203 60 r i r r i r i r
160 60 i i r r i r i r 204 58 i i r r i r i
161 60 i r r r i r i r 205 60 r i r r i r i r
162 58 i r r r i r i 206 58 r i r r i r i
163 58 i r r r i r i 207 58 i r r r i r i
164 58 r i r r i r i 208 58 r r r r i r i
165 60 r i r r i r i r 209 60 r i r r i r i r
166 60 r r r r i r i r 210 60 i r r r i r i r
167 58 i i r r i r i 211 60 r r r r i r i r
168 60 r r r r i r i r 212 58 i r r r i r i
169 58 r i r r i r i 213 60 r r r r i r i r
170 60 i i r r i r i r 214 58 i r r r i r i
171 60 r i r r i r i r 215 60 i r r r i r i r
172 58 r r r r i r i 216 60 i r r r i r i r
173 60 r i r r i r i r 217 60 r r r r i r i r
174 58 r i r r i r i 218 60 i r r r i r i r

The i, r, and d denote the usage of an item/module for distribution, recycling, and disposal, respectively.
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Table C.29 State assignment for core 3

sel.
state
s

item usage u mod. usage u
sel.
state
s

item usage u mod. usage u

i m i m

unit A B C D E F 14 47 unit A B C D E F 14 47

1 56 i i r r r r i 17 56 r r r r r r i
2 56 r r r r r r i 18 56 r r r r r r i
3 56 i i r r r r i 19 56 r i r r r r i
4 56 i i r r r r i 20 56 i r r r r r i
5 56 r i r r r r i 21 56 i r r r r r i
6 56 i r r r r r i 22 56 i r r r r r i
7 56 r r r r r r i 23 56 i i r r r r i
8 56 r i r r r r i 24 15 d d r
9 56 r i r r r r i 25 56 i r r r r r i
10 56 i i r r r r i 26 56 i r r r r r i
11 56 i r r r r r i 27 56 i i r r r r i
12 56 r r r r r r i 28 56 r i r r r r i
13 56 r r r r r r i 29 56 r i r r r r i
14 56 r r r r r r i 30 56 r r r r r r i
15 56 r i r r r r i 31 56 r r r r r r i
16 56 r r r r r r i

The i, r, and d denote the usage of an item/module for distribution, recycling, and disposal, respectively.
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Güngör, A. / Gupta, S. M. (1999): Issues in environmentally conscious
manufacturing and product recovery: A survey. In: Computers & In-
dustrial Engineering , Vol. 36, No. 4, pp. 811–853.



380 References
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